Estimating Rolling Element Bearing Stiffness Under Different Operational Conditions Through Modal Analysis

Author(s):  
William Jacobs ◽  
Rene Boonen ◽  
Paul Sas ◽  
David Moens
2005 ◽  
Vol 2005 (1) ◽  
pp. 53-59 ◽  
Author(s):  
David P. Fleming ◽  
J. V. Poplawski

Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus, an accurate rotordynamic analysis requires that bearing forces corresponding to the actual bearing deflection be utilized. For this work, bearing forces were calculated by COBRA-AHS, a recently developed rolling-element bearing analysis code. Bearing stiffness was found to be a strong function of bearing deflection, with higher deflection producing markedly higher stiffness. Curves fitted to the bearing data for a range of speeds and loads were supplied to a flexible rotor unbalance response analysis. The rotordynamic analysis showed that vibration response varied nonlinearly with the amount of rotor imbalance. Moreover, the increase in stiffness as critical speeds were approached caused a large increase in rotor and bearing vibration amplitude over part of the speed range compared to the case of constant-stiffness bearings. Regions of bistable operation were possible, in which the amplitude at a given speed was much larger during rotor acceleration than during deceleration. A moderate amount of damping will eliminate the bistable region, but this damping is not inherent in ball bearings.


2018 ◽  
Vol 18 (5-6) ◽  
pp. 1527-1542 ◽  
Author(s):  
Francesco Larizza ◽  
Alireza Moazen-Ahmadi ◽  
Carl Q Howard ◽  
Steven Grainger

The change in the static stiffness of a bearing assembly is an important discriminator when determining the size of a defect in a rolling element bearing. In this article, the force–displacement relationships for defective bearings under various static radial loadings at various cage angular positions are analytically estimated and experimentally measured and analyzed. The study shows that the applied load has a significant effect on the static stiffness variations in defective rolling element bearings. The experimental measurements of the effect of the defect size on the varying stiffness of the bearing assembly, which has not been shown previously, provides valuable knowledge for developing methods to distinguish between defective bearings with defects that are smaller or larger than one angular ball spacing. The methods and results presented here contribute to the wider experimental investigation of the effects of loadings on the varying static stiffness of defective bearings and its effects on the measured vibration signatures. A large data set was obtained and has been made publicly available.


2012 ◽  
Vol 19 (4) ◽  
pp. 715-726 ◽  
Author(s):  
Jacek Urbanek ◽  
Tomasz Barszcz ◽  
Tadeusz Uhl

Abstract Wind turbines are nowadays one of the most promising energy sources. Every year, the amount of energy produced from the wind grows steadily. Investors demand turbine manufacturers to produce bigger, more efficient and robust units. These requirements resulted in fast development of condition-monitoring methods. However, significant sizes and varying operational conditions can make diagnostics of the wind turbines very challenging. The paper shows the case study of a wind turbine that had suffered a serious rolling element bearing (REB) fault. The authors compare several methods for early detection of symptoms of the failure. The paper compares standard methods based on spectral analysis and a number of novel methods based on narrowband envelope analysis, kurtosis and cyclostationarity approach. The very important problem of proper configuration of the methods is addressed as well. It is well known that every method requires setting of several parameters. In the industrial practice, configuration should be as standard and simple as possible. The paper discusses configuration parameters of investigated methods and their sensitivity to configuration uncertainties


2004 ◽  
Vol 10 (6) ◽  
pp. 489-494 ◽  
Author(s):  
David P. Fleming ◽  
J. V. Poplawski

Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic transient analysis requires bearing forces to be determined at each step of the transient solution. Analyses have been carried out to show the effect of accurate bearing transient forces (accounting for nonlinear speed and load-dependent bearing stiffness) as compared to conventional use of average rolling-element bearing stiffness. Bearing forces were calculated by COBRA-AHS (Computer Optimized Ball and Roller Bearing Analysis—Advanced High Speed) and supplied to the rotordynamics code ARDS (Analysis of Rotor Dynamic Systems) for accurate simulation of rotor transient behavior. COBRA-AHS is a fast-running five degree-of-freedom computer code able to calculate high speed rolling-element bearing load-displacement data for radial and angular contact ball bearings and also for cylindrical and tapered roller bearings. Results show that use of nonlinear bearing characteristics is essential for accurate prediction of rotordynamic behavior.


Author(s):  
Wenbing Tu ◽  
Jinwen Yang ◽  
Wennian Yu ◽  
Ya Luo

The vibration response of rolling element bearing has a close relation with its fault. An accurate evaluation of the bearing vibration response is essential to the bearing fault diagnosis. At present, most bearing dynamics models are built based on rigid assumptions, which may not faithfully reveal the dynamic characteristics of bearing in the presence of fault. Moreover, previous similar works mainly focus on the fault with a specified size without considering the varying contact characteristics as the fault evolves. This paper developed an explicit dynamics finite element model for the bearing with three types of raceway faults considering the flexibility of each bearing component in order to accurately study the contact characteristic and vibration mechanism of defective bearings in the process of fault evolution. The developed model is validated by comparing its simulation results with both analytical and experimental results. The dynamic contact patterns between the rolling elements and the fault, the additional displacement due to the fault and the faulty characteristics within the bearing vibration signal during the fault evolution process are investigated. The analysis results from this work can provide practitioners an in-depth understanding towards the internal contact characteristics with the existence of raceway fault and theoretical basis for rolling bearing fault diagnosis.


Sign in / Sign up

Export Citation Format

Share Document