scholarly journals Robust and Accurate Coronary Artery Centerline Extraction in CTA by Combining Model-Driven and Data-Driven Approaches

Author(s):  
Yefeng Zheng ◽  
Huseyin Tek ◽  
Gareth Funka-Lea
Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2085
Author(s):  
Xue-Bo Jin ◽  
Ruben Jonhson Robert RobertJeremiah ◽  
Ting-Li Su ◽  
Yu-Ting Bai ◽  
Jian-Lei Kong

State estimation is widely used in various automated systems, including IoT systems, unmanned systems, robots, etc. In traditional state estimation, measurement data are instantaneous and processed in real time. With modern systems’ development, sensors can obtain more and more signals and store them. Therefore, how to use these measurement big data to improve the performance of state estimation has become a hot research issue in this field. This paper reviews the development of state estimation and future development trends. First, we review the model-based state estimation methods, including the Kalman filter, such as the extended Kalman filter (EKF), unscented Kalman filter (UKF), cubature Kalman filter (CKF), etc. Particle filters and Gaussian mixture filters that can handle mixed Gaussian noise are discussed, too. These methods have high requirements for models, while it is not easy to obtain accurate system models in practice. The emergence of robust filters, the interacting multiple model (IMM), and adaptive filters are also mentioned here. Secondly, the current research status of data-driven state estimation methods is introduced based on network learning. Finally, the main research results for hybrid filters obtained in recent years are summarized and discussed, which combine model-based methods and data-driven methods. This paper is based on state estimation research results and provides a more detailed overview of model-driven, data-driven, and hybrid-driven approaches. The main algorithm of each method is provided so that beginners can have a clearer understanding. Additionally, it discusses the future development trends for researchers in state estimation.


Author(s):  
Nawfal El Moukhi ◽  
Ikram El Azami ◽  
Abdelaaziz Mouloudi ◽  
Abdelali Elmounadi

The data warehouse design is currently recognized as the most important and complicated phase in any project of decision support system implementation. Its complexity is primarily due to the proliferation of data source types and the lack of a standardized and well-structured method, hence the increasing interest from researchers who have tried to develop new methods for the automation and standardization of this critical stage of the project. In this paper, the authors present the set of developed methods that follows the data-driven paradigm, and they propose a new data-driven method called X-ETL. This method aims to automating the data warehouse design by generating star models from relational data. This method is mainly based on a set of rules derived from the related works, the Model-Driven Architecture (MDA) and the XML language.


Sign in / Sign up

Export Citation Format

Share Document