mixed noise
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 86)

H-INDEX

15
(FIVE YEARS 3)

Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 148
Author(s):  
Julio César Salgado-Ramírez ◽  
Jean Marie Vianney Kinani ◽  
Eduardo Antonio Cendejas-Castro ◽  
Alberto Jorge Rosales-Silva ◽  
Eduardo Ramos-Díaz ◽  
...  

Associative memories in min and max algebra are of great interest for pattern recognition. One property of these is that they are one-shot, that is, in an attempt they converge to the solution without having to iterate. These memories have proven to be very efficient, but they manifest some weakness with mixed noise. If an appropriate kernel is not used, that is, a subset of the pattern to be recalled that is not affected by noise, memories fail noticeably. A possible problem for building kernels with sufficient conditions, using binary and gray-scale images, is not knowing how the noise is registered in these images. A solution to this problem is presented by analyzing the behavior of the acquisition noise. What is new about this analysis is that, noise can be mapped to a distance obtained by a distance transform. Furthermore, this analysis provides the basis for a new model of min heteroassociative memory that is robust to the acquisition/mixed noise. The proposed model is novel because min associative memories are typically inoperative to mixed noise. The new model of heteroassocitative memory obtains very interesting results with this type of noise.


Impulse and Gaussian are the two most common types of noise that affect digital images due to imperfections in the imaging process, compression, storage and communication. The conventional filtering approaches, however, reduce the image quality in terms of sharpness and resolution while suppressing the effects of noise. In this work, a machine learning-based filtering structure has been proposed preserves the image quality while effectively removing the noise. Specifically, a support vector machine classifier is employed to detect the type of noise affecting each pixel to select an appropriate filter. The choice of filters includes Median and Bilateral filters of different kernel sizes. The classifier is trained using example images with known noise parameters. The proposed filtering structure has been shown to perform better than the conventional approaches in terms of image quality metrics. Moreover, the design has been implemented as a hardware accelerator on an FPGA device using high-level synthesis tools.


2021 ◽  
Vol 11 (21) ◽  
pp. 10358
Author(s):  
Chun He ◽  
Ke Guo ◽  
Huayue Chen

In recent years, image filtering has been a hot research direction in the field of image processing. Experts and scholars have proposed many methods for noise removal in images, and these methods have achieved quite good denoising results. However, most methods are performed on single noise, such as Gaussian noise, salt and pepper noise, multiplicative noise, and so on. For mixed noise removal, such as salt and pepper noise + Gaussian noise, although some methods are currently available, the denoising effect is not ideal, and there are still many places worthy of improvement and promotion. To solve this problem, this paper proposes a filtering algorithm for mixed noise with salt and pepper + Gaussian noise that combines an improved median filtering algorithm, an improved wavelet threshold denoising algorithm and an improved Non-local Means (NLM) algorithm. The algorithm makes full use of the advantages of the median filter in removing salt and pepper noise and demonstrates the good performance of the wavelet threshold denoising algorithm and NLM algorithm in filtering Gaussian noise. At first, we made improvements to the three algorithms individually, and then combined them according to a certain process to obtain a new method for removing mixed noise. Specifically, we adjusted the size of window of the median filtering algorithm and improved the method of detecting noise points. We improved the threshold function of the wavelet threshold algorithm, analyzed its relevant mathematical characteristics, and finally gave an adaptive threshold. For the NLM algorithm, we improved its Euclidean distance function and the corresponding distance weight function. In order to test the denoising effect of this method, salt and pepper + Gaussian noise with different noise levels were added to the test images, and several state-of-the-art denoising algorithms were selected to compare with our algorithm, including K-Singular Value Decomposition (KSVD), Non-locally Centralized Sparse Representation (NCSR), Structured Overcomplete Sparsifying Transform Model with Block Cosparsity (OCTOBOS), Trilateral Weighted Sparse Coding (TWSC), Block Matching and 3D Filtering (BM3D), and Weighted Nuclear Norm Minimization (WNNM). Experimental results show that our proposed algorithm is about 2–7 dB higher than the above algorithms in Peak Signal-Noise Ratio (PSNR), and also has better performance in Root Mean Square Error (RMSE), Structural Similarity (SSIM), and Feature Similarity (FSIM). In general, our algorithm has better denoising performance, better restoration of image details and edge information, and stronger robustness than the above-mentioned algorithms.


2021 ◽  
Vol 13 (20) ◽  
pp. 4098
Author(s):  
Lina Zhuang ◽  
Michael K. Ng ◽  
Xiyou Fu

The ever-increasing spectral resolution of hyperspectral images (HSIs) is often obtained at the cost of a decrease in the signal-to-noise ratio (SNR) of the measurements. The decreased SNR reduces the reliability of measured features or information extracted from HSIs, thus calling for effective denoising techniques. This work aims to estimate clean HSIs from observations corrupted by mixed noise (containing Gaussian noise, impulse noise, and dead-lines/stripes) by exploiting two main characteristics of hyperspectral data, namely low-rankness in the spectral domain and high correlation in the spatial domain. We take advantage of the spectral low-rankness of HSIs by representing spectral vectors in an orthogonal subspace, which is learned from observed images by a new method. Subspace representation coefficients of HSIs are learned by solving an optimization problem plugged with an image prior extracted from a neural denoising network. The proposed method is evaluated on simulated and real HSIs. An exhaustive array of experiments and comparisons with state-of-the-art denoisers were carried out.


Author(s):  
Ahmed Abdulqader Hussein ◽  
Sabahaldin A. Hussain ◽  
Ahmed Hameed Reja

<p>A modified mixed Gaussian plus impulse image denoising algorithm based on weighted encoding with image sparsity and nonlocal self-similarity priors regularization is proposed in this paper. The encoding weights and the priors imposed on the images are incorporated into a variational framework to treat more complex mixed noise distribution. Such noise is characterized by heavy tails caused by impulse noise which needs to be eliminated through proper weighting of encoding residual. The outliers caused by the impulse noise has a significant effect on the encoding weights. Hence a more accurate residual encoding error initialization plays the important role in overall denoising performance, especially at high impulse noise rates. In this paper, outliers free initialization image, and an easier to implement a parameter-free procedure for updating encoding weights have been proposed. Experimental results demonstrate the capability of the proposed strategy to recover images highly corrupted by mixed Gaussian plus impulse noise as compared with the state of art denoising algorithm. The achieved results motivate us to implement the proposed algorithm in practice.</p>


2021 ◽  
Vol 13 (16) ◽  
pp. 3196
Author(s):  
Wei Liu ◽  
Chengxun He ◽  
Le Sun

During the imaging process, hyperspectral image (HSI) is inevitably affected by various noises, such as Gaussian noise, impulse noise, stripes or deadlines. As one of the pre-processing steps, the removal of mixed noise for HSI has a vital impact on subsequent applications, and it is also one of the most challenging tasks. In this paper, a novel spectral-smoothness and non-local self-similarity regularized subspace low-rank learning (termed SNSSLrL) method was proposed for the mixed noise removal of HSI. First, under the subspace decomposition framework, the original HSI is decomposed into the linear representation of two low-dimensional matrices, namely the subspace basis matrix and the coefficient matrix. To further exploit the essential characteristics of HSI, on the one hand, the basis matrix is modeled as spectral smoothing, which constrains each column vector of the basis matrix to be a locally continuous spectrum, so that the subspace formed by its column vectors has continuous properties. On the other hand, the coefficient matrix is divided into several non-local block matrices according to the pixel coordinates of the original HSI data, and block-matching and 4D filtering (BM4D) is employed to reconstruct these self-similar non-local block matrices. Finally, the formulated model with all convex items is solved efficiently by the alternating direction method of multipliers (ADMM). Extensive experiments on two simulated datasets and one real dataset verify that the proposed SNSSLrL method has greater advantages than the latest state-of-the-art methods.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Keya Huang ◽  
Hairong Zhu

Aiming at the problem of unclear images acquired in interactive systems, an improved image processing algorithm for nonlocal mean denoising is proposed. This algorithm combines the adaptive median filter algorithm with the traditional nonlocal mean algorithm, first adjusts the image window adaptively, selects the corresponding pixel weight, and then denoises the image, which can have a good filtering effect on the mixed noise. The experimental results show that, compared with the traditional nonlocal mean algorithm, the algorithm proposed in this paper has better results in the visual quality and peak signal-to-noise ratio (PSNR) of complex noise images.


Sign in / Sign up

Export Citation Format

Share Document