Data-driven and Model-driven Deep Learning Detection for RIS-aided Spatial Modulation

Author(s):  
Jiang Liu ◽  
Marco Di Renzo
2018 ◽  
Vol 37 (4-5) ◽  
pp. 405-420 ◽  
Author(s):  
Niko Sünderhauf ◽  
Oliver Brock ◽  
Walter Scheirer ◽  
Raia Hadsell ◽  
Dieter Fox ◽  
...  

The application of deep learning in robotics leads to very specific problems and research questions that are typically not addressed by the computer vision and machine learning communities. In this paper we discuss a number of robotics-specific learning, reasoning, and embodiment challenges for deep learning. We explain the need for better evaluation metrics, highlight the importance and unique challenges for deep robotic learning in simulation, and explore the spectrum between purely data-driven and model-driven approaches. We hope this paper provides a motivating overview of important research directions to overcome the current limitations, and helps to fulfill the promising potentials of deep learning in robotics.


2021 ◽  
Vol 11 (22) ◽  
pp. 10935
Author(s):  
Hongju Zhou ◽  
Liping Sun ◽  
Hongwei Zhou ◽  
Man Zhao ◽  
Xinpei Yuan ◽  
...  

The health of trees has become an important issue in forestry. How to detect the health of trees quickly and accurately has become a key area of research for scholars in the world. In this paper, a living tree internal defect detection model is established and analyzed using model-driven theory, where the theoretical fundamentals and implementations of the algorithm are clarified. The location information of the defects inside the trees is obtained by setting a relative permittivity matrix. The data-driven inversion algorithm is realized using a model-driven algorithm that is used to optimize the deep convolutional neural network, which combines the advantages of model-driven algorithms and data-driven algorithms. The results of the comparison inversion algorithms, the BP neural network inversion algorithm, and the model-driven deep learning network inversion algorithm, are analyzed through simulations. The results shown that the model-driven deep learning network inversion algorithm maintains a detection accuracy of more than 90% for single defects or homogeneous double defects, while it can still have a detection accuracy of 78.3% for heterogeneous multiple defects. In the simulations, the single defect detection time of the model-driven deep learning network inversion algorithm is kept within 0.1 s. Additionally, the proposed method overcomes the high nonlinearity and ill-posedness electromagnetic inverse scattering and reduces the time cost and computational complexity of detecting internal defects in trees. The results show that resolution and accuracy are improved in the inversion image for detecting the internal defects of trees.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2085
Author(s):  
Xue-Bo Jin ◽  
Ruben Jonhson Robert RobertJeremiah ◽  
Ting-Li Su ◽  
Yu-Ting Bai ◽  
Jian-Lei Kong

State estimation is widely used in various automated systems, including IoT systems, unmanned systems, robots, etc. In traditional state estimation, measurement data are instantaneous and processed in real time. With modern systems’ development, sensors can obtain more and more signals and store them. Therefore, how to use these measurement big data to improve the performance of state estimation has become a hot research issue in this field. This paper reviews the development of state estimation and future development trends. First, we review the model-based state estimation methods, including the Kalman filter, such as the extended Kalman filter (EKF), unscented Kalman filter (UKF), cubature Kalman filter (CKF), etc. Particle filters and Gaussian mixture filters that can handle mixed Gaussian noise are discussed, too. These methods have high requirements for models, while it is not easy to obtain accurate system models in practice. The emergence of robust filters, the interacting multiple model (IMM), and adaptive filters are also mentioned here. Secondly, the current research status of data-driven state estimation methods is introduced based on network learning. Finally, the main research results for hybrid filters obtained in recent years are summarized and discussed, which combine model-based methods and data-driven methods. This paper is based on state estimation research results and provides a more detailed overview of model-driven, data-driven, and hybrid-driven approaches. The main algorithm of each method is provided so that beginners can have a clearer understanding. Additionally, it discusses the future development trends for researchers in state estimation.


2021 ◽  
Vol 13 (12) ◽  
pp. 2326
Author(s):  
Xiaoyong Li ◽  
Xueru Bai ◽  
Feng Zhou

A deep-learning architecture, dubbed as the 2D-ADMM-Net (2D-ADN), is proposed in this article. It provides effective high-resolution 2D inverse synthetic aperture radar (ISAR) imaging under scenarios of low SNRs and incomplete data, by combining model-based sparse reconstruction and data-driven deep learning. Firstly, mapping from ISAR images to their corresponding echoes in the wavenumber domain is derived. Then, a 2D alternating direction method of multipliers (ADMM) is unrolled and generalized to a deep network, where all adjustable parameters in the reconstruction layers, nonlinear transform layers, and multiplier update layers are learned by an end-to-end training through back-propagation. Since the optimal parameters of each layer are learned separately, 2D-ADN exhibits more representation flexibility and preferable reconstruction performance than model-driven methods. Simultaneously, it is able to better facilitate ISAR imaging with limited training samples than data-driven methods owing to its simple structure and small number of adjustable parameters. Additionally, benefiting from the good performance of 2D-ADN, a random phase error estimation method is proposed, through which well-focused imaging can be acquired. It is demonstrated by experiments that although trained by only a few simulated images, the 2D-ADN shows good adaptability to measured data and favorable imaging results with a clear background can be obtained in a short time.


Sign in / Sign up

Export Citation Format

Share Document