scholarly journals Automatically Mapped Transfer between Reinforcement Learning Tasks via Three-Way Restricted Boltzmann Machines

Author(s):  
Haitham Bou Ammar ◽  
Decebal Constantin Mocanu ◽  
Matthew E. Taylor ◽  
Kurt Driessens ◽  
Karl Tuyls ◽  
...  
2018 ◽  
Vol 18 (1&2) ◽  
pp. 51-74 ◽  
Author(s):  
Daniel Crawford ◽  
Anna Levit ◽  
Navid Ghadermarzy ◽  
Jaspreet S. Oberoi ◽  
Pooya Ronagh

We investigate whether quantum annealers with select chip layouts can outperform classical computers in reinforcement learning tasks. We associate a transverse field Ising spin Hamiltonian with a layout of qubits similar to that of a deep Boltzmann machine (DBM) and use simulated quantum annealing (SQA) to numerically simulate quantum sampling from this system. We design a reinforcement learning algorithm in which the set of visible nodes representing the states and actions of an optimal policy are the first and last layers of the deep network. In absence of a transverse field, our simulations show that DBMs are trained more effectively than restricted Boltzmann machines (RBM) with the same number of nodes. We then develop a framework for training the network as a quantum Boltzmann machine (QBM) in the presence of a significant transverse field for reinforcement learning. This method also outperforms the reinforcement learning method that uses RBMs.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Peter Morales ◽  
Rajmonda Sulo Caceres ◽  
Tina Eliassi-Rad

AbstractComplex networks are often either too large for full exploration, partially accessible, or partially observed. Downstream learning tasks on these incomplete networks can produce low quality results. In addition, reducing the incompleteness of the network can be costly and nontrivial. As a result, network discovery algorithms optimized for specific downstream learning tasks given resource collection constraints are of great interest. In this paper, we formulate the task-specific network discovery problem as a sequential decision-making problem. Our downstream task is selective harvesting, the optimal collection of vertices with a particular attribute. We propose a framework, called network actor critic (NAC), which learns a policy and notion of future reward in an offline setting via a deep reinforcement learning algorithm. The NAC paradigm utilizes a task-specific network embedding to reduce the state space complexity. A detailed comparative analysis of popular network embeddings is presented with respect to their role in supporting offline planning. Furthermore, a quantitative study is presented on various synthetic and real benchmarks using NAC and several baselines. We show that offline models of reward and network discovery policies lead to significantly improved performance when compared to competitive online discovery algorithms. Finally, we outline learning regimes where planning is critical in addressing sparse and changing reward signals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guanglei Xu ◽  
William S. Oates

AbstractRestricted Boltzmann Machines (RBMs) have been proposed for developing neural networks for a variety of unsupervised machine learning applications such as image recognition, drug discovery, and materials design. The Boltzmann probability distribution is used as a model to identify network parameters by optimizing the likelihood of predicting an output given hidden states trained on available data. Training such networks often requires sampling over a large probability space that must be approximated during gradient based optimization. Quantum annealing has been proposed as a means to search this space more efficiently which has been experimentally investigated on D-Wave hardware. D-Wave implementation requires selection of an effective inverse temperature or hyperparameter ($$\beta $$ β ) within the Boltzmann distribution which can strongly influence optimization. Here, we show how this parameter can be estimated as a hyperparameter applied to D-Wave hardware during neural network training by maximizing the likelihood or minimizing the Shannon entropy. We find both methods improve training RBMs based upon D-Wave hardware experimental validation on an image recognition problem. Neural network image reconstruction errors are evaluated using Bayesian uncertainty analysis which illustrate more than an order magnitude lower image reconstruction error using the maximum likelihood over manually optimizing the hyperparameter. The maximum likelihood method is also shown to out-perform minimizing the Shannon entropy for image reconstruction.


Sign in / Sign up

Export Citation Format

Share Document