Predicting Road Accidents Based on Current and Historical Spatio-temporal Traffic Flow Data

Author(s):  
Rupa Jagannathan ◽  
Sanja Petrovic ◽  
Gavin Powell ◽  
Matthew Roberts
Author(s):  
Shen Fang ◽  
Veronique Prinet ◽  
Jianlong Chang ◽  
Michael Werman ◽  
Chunxia Zhang ◽  
...  

2013 ◽  
Vol 846-847 ◽  
pp. 1608-1611 ◽  
Author(s):  
Hui Jie Ding

As more and more cars are in service, the traffic jam becomes a serious problem in our society. At the same time, more and more sensors make the cars more and more intelligent, and this promotes the development of Internet of things. Real time monitoring the cars will produce massive sensing data, the Cloud computing gives us a good manner to solve this problem. In this paper, we propose a traffic flow data collection and traffic signal control system based on Internet of things and the Cloud computing. The proposed system contains two main parts, sensing data collection and traffic status control subsystem.


Author(s):  
Wan Fairos Wan Yaacob ◽  
Shahirah Binti Ibrahim ◽  
Ainin Sorfina Afizan ◽  
Nur Azreen Faizul Azran ◽  
Syerina Azlin Md Nasir ◽  
...  

Author(s):  
Paulus Setiawan Suryadjaja ◽  
◽  
Maclaurin Hutagalung ◽  
Herman Yoseph Sutarto ◽  
◽  
...  

This Research presents a macroscopic model of traffic flow as the basis for making Intelligent Transportation System (ITS). The data used for modeling is The number of passing vehicles per three minutes. The traffic flow model created in The form of Fluid Flow Model (FFM). The parameters in The model are obtained by mixture Gaussian distribution approach. The distribution consists of two Gaussian distributions, each representing the mode of traffic flow. In The distribution, intermode shifting process is illustrated by the first-order Markov chain process. The parameters values are estimated using The Expectation-maximization (EM) algorithm. After The required parameter values are obtained, traffic flow is estimated using the Observation and transition-basedmost likely estimates Tracking Particle Filter (OTPF). To Examine the accuracy of the model has been made, the model estimation results are compared with the actual traffic flow data. Traffic flow data is collected on Monday 20 September 2017 at 06.00 to 10.00 on DipatiukurRoad, Bandung. The proposed model has accuracy with MAPE value below 10%, or falls into highly accurate categories


2019 ◽  
Vol 9 (4) ◽  
pp. 615 ◽  
Author(s):  
Panbiao Liu ◽  
Yong Zhang ◽  
Dehui Kong ◽  
Baocai Yin

Buses, as the most commonly used public transport, play a significant role in cities. Predicting bus traffic flow cannot only build an efficient and safe transportation network but also improve the current situation of road traffic congestion, which is very important for urban development. However, bus traffic flow has complex spatial and temporal correlations, as well as specific scenario patterns compared with other modes of transportation, which is one of the biggest challenges when building models to predict bus traffic flow. In this study, we explore bus traffic flow and its specific scenario patterns, then we build improved spatio-temporal residual networks to predict bus traffic flow, which uses fully connected neural networks to capture the bus scenario patterns and improved residual networks to capture the bus traffic flow spatio-temporal correlation. Experiments on Beijing transportation smart card data demonstrate that our method achieves better results than the four baseline methods.


Sign in / Sign up

Export Citation Format

Share Document