2018 ◽  
Vol 6 (4) ◽  
pp. T1117-T1139
Author(s):  
Sarah A. Clark ◽  
Matthew J. Pranter ◽  
Rex D. Cole ◽  
Zulfiquar A. Reza

The Cretaceous Burro Canyon Formation in the southern Piceance Basin, Colorado, represents low sinuosity to sinuous braided fluvial deposits that consist of amalgamated channel complexes, amalgamated and isolated fluvial-bar channel fills, and floodplain deposits. Lithofacies primarily include granule-cobble conglomerates, conglomeratic sandstones, cross-stratified sandstones, upward-fining sandstones, and gray-green mudstones. To assess the effects of variable sandstone-body geometry and internal lithofacies and petrophysical heterogeneity on reservoir performance, conventional field methods are combined with unmanned aerial vehicle-based photogrammetry to create representative outcrop-based reservoir models. Outcrop reservoir models and fluid-flow simulations compare three reservoir scenarios of the Burro Canyon Formation based on stratigraphic variability, sandstone-body geometry, and lithofacies heterogeneity. Simulation results indicate that lithofacies variability can account for an almost 50% variation in breakthrough time (BTT). Internal channel-bounding surfaces reduce the BTT by 2%, volumetric sweep efficiency by 8%, and recovery efficiency by 10%. Three lateral grid resolutions and two permeability-upscaling methods for each reservoir scenario are explored in fluid-flow simulations to investigate how upscaling impacts reservoir performance. Our results indicate that coarsely resolved grids experience delayed breakthrough by as much as 40% and greater volumetric sweep efficiency by an average of 10%. Permeability models that are upscaled using a geometric mean preserve slightly higher values than those using a harmonic mean. For upscaling based on a geometric mean, BTTs are delayed by an average of 17% and the volumetric sweep efficiency is reduced by as much as 10%. Results of the study highlight the importance of properly incorporating stratigraphic details into 3D reservoir models and preserving those details through proper upscaling methods.


1967 ◽  
Vol 7 (03) ◽  
pp. 243-251 ◽  
Author(s):  
Paul Edwin Potter ◽  
Robert F. Blakely

Abstract Any stratigraphic section or bedding sequence can be synthesized if there is a transition procedure from one lithology or bedding type to another, and if thickness distributions of the different lithologies are known. Stratigraphic sections of a fluvial sandstone body were synthesized with five bedding types: cross-bedding, massive beds, parting lineation, ripple mark and mudstone. The transition procedure from one bedding type to another used dependent, Markovian random processes which have a memory that extends one step backward in the depositional process. As observed in nature, median grain size and sand wave thickness (cross-bedding and ripple mark) decline upward in the synthesized sections as proportions of the different bedding types change. Grain size and permeability were also incorporated into the sections. By changing the transition procedures, bed thickness distributions, rate of upward decline or sand wave height and length, different types of sections can be synthesized, thus making it possible to model many different sedimentation problems. Introduction This paper describes a general method for synthesizing stratigraphic sections and bedding sequences of sedimentary, metamorphic or igneous origin. Synthetic generation is of interest for several reasons. Close correspondence between real and synthetic sections suggest that the factors used in the synthesizing model may indeed be the correct ones, thus giving the investigator a check on his assumptions. Rapid, inexpensive simulation of many stratigraphic sections permits one to synthesize a rock body (sandstone or carbonate reservoir) or, on a larger scale, the fill of a sedimentary basin. Harbaugh gives an example of mathematical simulation of a carbonate basin. He simulated the basin in the hope that improved prediction would follow better understanding of the depositional processes. From the petroleum engineer's viewpoint it seems reasonable to believe that the synthetic generation of rock properties and their distribution in a reservoir should be relevant in the study of reservoirs. Any stratigraphic section or bedding sequence can be generated provided there is a transition procedure from one lithology or bedding type to another and provided the thickness distributions of the different units are known. The transition procedure involves random processes that are either independent or dependent. If the depositional process is independent, previous deposition will have no influence on present deposition. However, if it is dependent, past deposition will influence either present or future deposition. Such a dependent depositional process can be thought of as having a memory that extends backward in time through one or more pulses of deposition. A process with a memory can be described by a Markov process. Because the concept of memory or dependence appears to be in accord with our understanding of many depositional processes, Markov processes were used to synthesize the bedding sequences of this study (see Appendix). The above methods are perfectly general and are appropriate for any stratigraphic section or bedding sequence: bedding types in a beach deposit, an evolving carbonate bank or the changing lithologic fill of a thick geosyncline sequence. We chose to synthesize a vertical profile of a fluvial sandstone body because its characteristics were well documented, much was known about fluvial processes and fluvial-deltaic sandstone bodies constitute an important class of petroleum reservoirs. CHARACTERISTICS AND ORIGIN OF FLUVIAL CYCLE The fluvial cycle has been well documented in recent years by Bersier, Allen and Visher. Deposits from fluvial cycles range from 10 to 150 ft or more in thickness and are characterized by a "fining upwards": coarse sandstones with occasional conglomerates grade upward into medium- to fine-grained sandstone, and hence into siltstone and mudstone. SPEJ P. 243ˆ


2010 ◽  
Vol 61 (1) ◽  
pp. 55-69 ◽  
Author(s):  
Boris Vrbanac ◽  
Josipa Velić ◽  
Tomislav Malvić

Sedimentation of deep-water turbidites in the SW part of the Pannonian BasinThe Sava Depression and the Bjelovar Subdepression belong to the SW margin of the Pannonian Basin System, which was part of the Central Paratethys during the Pannonian period. Upper Pannonian deposits of the Ivanic-Grad Formation in the Sava Depression include several lithostratigraphic members such as Iva and Okoli Sandstone Member or their lateral equivalents, the Zagreb Member and Lipovac Marlstone Member. Their total thickness in the deepest part of the Sava Depression reaches up to 800 meters, while it is 100-200 meters in the margins of the depression. Deposits in the depression are composed of 4 facies. In the period of turbiditic activities these facies are primarily sedimented as different sandstone bodies. In the Bjelovar Subdepression, two lithostratigraphic members (lateral equivalent) were analysed, the Zagreb Member and Okoli Sandstone Member. The thickness of the Bjelovar Subdepression ranges from 50 meters along the S and SE margins to more than 350 meters along the E margin. Generally, detritus in the north-west part of the analysed area originated from a single source, the Eastern Alps, as demonstrated by sedimentological and physical properties, the geometry of the sandstone body and the fossil content. This clastic material was found to be dispersed throughout the elongated and relatively narrow Sava Depression and in the smaller Bjelovar Subdepression. Sedimentation primarily occurred in up to 200 meters water depth and was strongly influenced by the sub-aqueous paleorelief, which determined the direction of the flow of turbidity currents and sandstone body geometries. The main stream with medium- and fine-grained material was separated by two independent turbiditic flows from N-NW to the SE-E. Variability in the thickness of sandstone bodies is the result of differences in subsidence and cycles of progradation and retrogradation of turbidite fans.


2017 ◽  
Vol 08 (03) ◽  
pp. 277-285 ◽  
Author(s):  
Shancong Yao ◽  
Mao Wang ◽  
Shuxin Duan ◽  
Shuang Chen ◽  
Wusheng Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document