Fatigue Damage Mitigation by the Integration of Active and Passive Load Control Techniques on Wind Turbines

Author(s):  
C. L. Bottasso ◽  
F. Campagnolo ◽  
A. Croce ◽  
C. Tibaldi
Wind Energy ◽  
2010 ◽  
Vol 13 (2-3) ◽  
pp. 239-253 ◽  
Author(s):  
Scott J. Johnson ◽  
Jonathon P. Baker ◽  
C. P. van Dam ◽  
Dale Berg

2008 ◽  
Author(s):  
C.P. van Dam ◽  
Dale E. Berg ◽  
Scott J. Johnson

The documented investigation in this paper examines main power quality for wind turbines and its connection with the public grid. This main goal has been to investigate most popular type of wind turbines which are grid connected using doubly-fed induction generators (DFIG) at normal operation, as well as voltage control of these wind turbines after clearing a lines short circuit in the utility grid. This paper introduces the configuration of main portions of grid connected turbines, which have an importance in the wind power plants operation. It also proposes a new compact modeling of these wind turbines, which has a feature that the expressions of most plant portions are free of any complex or details that described in other past models. Most of last models are spotted on the normal operation of single wind turbines, without consideration of gird interaction faults. The proposed control techniques are new combined and concentrated on the voltage recovery, which plays very important role in the power quality and stability of wind turbines plants which are connected with the grid. Net simulation results show that the combination of pitch control and dynamic slip control could to have power system stability efficiently, and restore the voltage to its normal condition. A simulation of wind turbine using pitch control and dynamic slip control are developed by the simulation program is called power system computer aiding design (PSCAD) and carried out the stability investigations respecting to short circuit in external power lines system. After clearing of the fault, the recovery of voltage at the terminals of wind turbine should to rebuild, then the wind power turbine should going to its normal case. Control of the pitch angle or generator slip can adjusting the aerodynamic torque and the electromagnetic torque at the turbine which can be help to recovery the voltage at the terminals of wind turbine. The results of case study simulation are proved that pitch and dynamic slip controls are methods to improve the recovery of voltage effectively and going to the system stability quickly, especially the combined controls of dynamic slip and pitch angel together.


Author(s):  
Atsushi Yamashita ◽  
Kinji Sekita

For the design of offshore wind turbines exposed to wind and wave loads, the method of combining the wind load and the wave load is significantly important to properly calculate the maximum stresses and deflections of the towers and the foundations1). Similarly, for the analysis of the fatigue damage critical to the structural life, the influences of combined wind and wave loads have not been clearly verified. In this paper fatigue damage at the time of typhoon passing is analyzed using actually recorded data, though intrinsically long-term data more than 10years should be used to properly evaluate the fatigue damage. This paper concludes that the fatigue damage of the tower caused by the wave load is not substantial and, thus, the fatigue damage by the combined wind and wave load is only 2–3% larger than the simple addition of the independent fatigue damages by the wind and the wave loads. The fatigue damage of the tower top, which is required to reduce the diameter in order to minimize the aerodynamic confliction with blades, is larger than that of the tower bottom. The fatigue damage at the foundation by the combined wind and wave load is 25% larger than the simple addition of the wind and wave damages, as the foundation is directly exposed to the wave load. For the foundation, the proper structural section can be designed in order to improve the structural performance against fatigue.


Energy ◽  
2018 ◽  
Vol 150 ◽  
pp. 310-319 ◽  
Author(s):  
Eduardo José Novaes Menezes ◽  
Alex Maurício Araújo ◽  
Janardan Singh Rohatgi ◽  
Pedro Manuel González del Foyo

Author(s):  
Sebastian Schafhirt ◽  
John M. Hembre ◽  
Michael Muskulus

There has been an ongoing debate whether local out-of-plane vibrations of braces exist in jacket support structures for wind turbines. The issue has been raised with the sequential analysis of offshore wind turbines, where increased fatigue damage for bracings was observed. Local vibration modes, excited by rotor harmonics, were detected as a reason for it. A methodology to remove global motion of the jacket from the displacements of the central joint in a brace is presented and the amplitude of local out-of-plane displacements is analyzed, using an integrated wind turbine simulation based on a flexible multibody solver. Finally, the impact on fatigue damage is calculated. Results indicate that the extent of local vibrations is much less than previously thought or predicted in other studies.


Sign in / Sign up

Export Citation Format

Share Document