Integrable Singular Integral Evolution Equations

Author(s):  
P. M. Santini
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Qinghua Zhang ◽  
Yueping Zhu ◽  
Feng Wang

This paper is devoted to the maximal regularity of sectorial operators in Lebesgue spaces Lp⋅ with a variable exponent. By extending the boundedness of singular integral operators in variable Lebesgue spaces from scalar type to abstract-valued type, the maximal Lp⋅−regularity of sectorial operators is established. This paper also investigates the trace of the maximal regularity space E01,p⋅I, together with the imbedding property of E01,p⋅I into the range-varying function space C−I,X1−1/p⋅,p⋅. Finally, a type of semilinear evolution equations with domain-varying nonlinearities is taken into account.


2020 ◽  
Vol 8 (4) ◽  
pp. 410-415
Author(s):  
Mahmoud M. El-Borai ◽  
Khairia El-Said El-Nadi

2008 ◽  
Author(s):  
Alexandru Alin Pogan

2016 ◽  
Vol 75 (20) ◽  
pp. 1799-1812
Author(s):  
V. A. Doroshenko ◽  
S.N. Ievleva ◽  
N.P. Klimova ◽  
A. S. Nechiporenko ◽  
A. A. Strelnitsky

Author(s):  
Brian Street

This chapter turns to a general theory which generalizes and unifies all of the examples in the preceding chapters. A main issue is that the first definition from the trichotomy does not generalize to the multi-parameter situation. To deal with this, strengthened cancellation conditions are introduced. This is done in two different ways, resulting in four total definitions for singular integral operators (the first two use the strengthened cancellation conditions, while the later two are generalizations of the later two parts of the trichotomy). Thus, we obtain four classes of singular integral operators, denoted by A1, A2, A3, and A4. The main theorem of the chapter is A1 = A2 = A3 = A4; i.e., all four of these definitions are equivalent. This leads to many nice properties of these singular integral operators.


Author(s):  
Brian Street

This chapter discusses a case for single-parameter singular integral operators, where ρ‎ is the usual distance on ℝn. There, we obtain the most classical theory of singular integrals, which is useful for studying elliptic partial differential operators. The chapter defines singular integral operators in three equivalent ways. This trichotomy can be seen three times, in increasing generality: Theorems 1.1.23, 1.1.26, and 1.2.10. This trichotomy is developed even when the operators are not translation invariant (many authors discuss such ideas only for translation invariant, or nearly translation invariant operators). It also presents these ideas in a slightly different way than is usual, which helps to motivate later results and definitions.


2015 ◽  
Vol 11 (3) ◽  
pp. 3134-3138 ◽  
Author(s):  
Mostafa Khater ◽  
Mahmoud A.E. Abdelrahman

In this work, an extended Jacobian elliptic function expansion method is pro-posed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the Couple Boiti-Leon-Pempinelli System which plays an important role in mathematical physics.


2008 ◽  
Vol 8 (2) ◽  
pp. 143-154 ◽  
Author(s):  
P. KARCZMAREK

AbstractIn this paper, Jacobi and trigonometric polynomials are used to con-struct the approximate solution of a singular integral equation with multiplicative Cauchy kernel in the half-plane.


Sign in / Sign up

Export Citation Format

Share Document