Differential and Linear Distributions of Substitution Boxes for Symmetric-Key Cryptosystems

Author(s):  
Peter Roelse
2019 ◽  
Vol 3 (3) ◽  
pp. 26
Author(s):  
Bassam W. Aboshosha ◽  
Mohamed M. Dessouky ◽  
Ayman Elsayed

Saving energy is one of the most challenging aspects in the wireless network devices. Such devices are connected together to perform a certain task. A well-known example of these structures is the Wireless Sensor Network (WSN). Distributed WSN consists of several spread nodes in a harsh area. Therefore, once network has been established sensors replacement is not a possible option before at least five years which called network lifetime. So, it is a necessity to develop specific energy aware algorithms that could save battery lifetime as much as possible. Security and Privacy are the vital elements which need to be addressed to hold up to the trust of users in WSN environment. Because the majority of modern cryptographic algorithms were designed for desktop/server environments, many of these algorithms cannot be implemented in the constrained devices used by these networks. Symmetric key algorithms are a typically efficient and fast cryptosystem, so it has significant applications in many realms. For a WSN with constraint computational resources, the cryptosystem based on symmetric key algorithms is extremely suitable for such an agile and dynamic environment. Therefore, a Simple Lightweight Encryption Algorithm (SLEA) based on addition and subtraction operations and compact Substitution-boxes (S-boxes) is proposed for wireless networks due to its low energy consumption, simple hardware requirements and suitable level of security. In addition, the algorithm tries to overcome the limitations of both public- and symmetric-key protocols. It relies on a smart version of Feistel structure.


2019 ◽  
Vol 15 (12) ◽  
pp. 155014771989595 ◽  
Author(s):  
Muhammad Usama ◽  
Osama Rehman ◽  
Imran Memon ◽  
Safdar Rizvi

A substitution box is a core component of the popular symmetric-key algorithms. However, the major problem of the conventional substitution boxes is the statistic behavior, which is employed as a fixed-size lookup table. To solve the fixed-size lookup table problem, various substitution box construction methods were proposed with key control, but it is hard to enhance all cryptographic properties, for example, linear and differential probabilities. Thus, chaos is applied for key control in designing robust substitution boxes due to unpredictable and random-like behavior. Moreover, the confusion and diffusion properties of cryptography can be achieved by chaos. This article introduces an efficient construction of a key-dependent substitution box based on the mixing property of the chaotic sine map. The substitution box so constructed has very low differential and linear approximation probabilities. The experimental results confirmed that the proposed method to construct substitution box has acceptable cryptographic properties to resist against various cryptanalysis.


2019 ◽  
Vol 7 (4) ◽  
pp. 220-224
Author(s):  
J.Lenin . ◽  
B. Sundaravadivazhagan ◽  
M. Sulthan Ibrahim
Keyword(s):  

Author(s):  
Kaldius Ndruru ◽  
Putri Ramadhani

Security of data stored on computers is now an absolute requirement, because every data has a high enough value for the user, reader and owner of the data itself. To prevent misuse of the data by other parties, data security is needed. Data security is the protection of data in a system against unauthorized authorization, modification, or destruction. The science that explains the ways of securing data is known as cryptography, while the steps in cryptography are called critical algorithms. At this time, there are many cryptographic algorithms whose keys are weak especially the symmetric key algorithm because they only have one key, the key for encryption is the same as the decryption key so it needs to be modified so that the cryptanalysts are confused in accessing important data. The cryptographic method of Word Auto Key Encryption (WAKE) is one method that has been used to secure data where in this case the writer wants to maximize the encryption key and description of the WAKE algorithm that has been processed through key formation. One way is to apply the algebraic pascal triangle method to maximize the encryption key and description of the WAKE algorithm, utilizing the numbers contained in the columns and rows of the pascal triangle to make shifts on the encryption key and the description of the WAKE algorithm.Keywords: Cryptography, WAKE, pascal


2019 ◽  
Author(s):  
Ira Nath ◽  
Renesha Ghosh ◽  
Sourav Ghosh ◽  
Pranati Rakshit ◽  
Dharmpal Singh

2019 ◽  
Author(s):  
Ira Nath ◽  
Pranati Rakshit ◽  
Renesha Ghosh ◽  
Sourav Ghosh ◽  
Dharmpal Singh

2019 ◽  
Vol 28 (1) ◽  
pp. 361-368
Author(s):  
Bassam Abshosha ◽  
Mohamed Dessouky ◽  
Rabie Ramdan ◽  
Ayman EL-SAYED

Sign in / Sign up

Export Citation Format

Share Document