Control of Cellular Processes by Reversible Protein Phosphorylation

1997 ◽  
pp. 3-8
Author(s):  
Edmond H. Fischer
2009 ◽  
Vol 8 (7) ◽  
pp. 922-932 ◽  
Author(s):  
Jens Boesger ◽  
Volker Wagner ◽  
Wolfram Weisheit ◽  
Maria Mittag

ABSTRACT Cilia and flagella are cell organelles that are highly conserved throughout evolution. For many years, the green biflagellate alga Chlamydomonas reinhardtii has served as a model for examination of the structure and function of its flagella, which are similar to certain mammalian cilia. Proteome analysis revealed the presence of several kinases and protein phosphatases in these organelles. Reversible protein phosphorylation can control ciliary beating, motility, signaling, length, and assembly. Despite the importance of this posttranslational modification, the identities of many ciliary phosphoproteins and knowledge about their in vivo phosphorylation sites are still missing. Here we used immobilized metal affinity chromatography to enrich phosphopeptides from purified flagella and analyzed them by mass spectrometry. One hundred forty-one phosphorylated peptides were identified, belonging to 32 flagellar proteins. Thereby, 126 in vivo phosphorylation sites were determined. The flagellar phosphoproteome includes different structural and motor proteins, kinases, proteins with protein interaction domains, and many proteins whose functions are still unknown. In several cases, a dynamic phosphorylation pattern and clustering of phosphorylation sites were found, indicating a complex physiological status and specific control by reversible protein phosphorylation in the flagellum.


Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 957
Author(s):  
Seung-Hyeon Seok

Protein phosphorylation is one of the most widely observed and important post-translational modification (PTM) processes. Protein phosphorylation is regulated by protein kinases, each of which covalently attaches a phosphate group to an amino acid side chain on a serine (Ser), threonine (Thr), or tyrosine (Tyr) residue of a protein, and by protein phosphatases, each of which, conversely, removes a phosphate group from a phosphoprotein. These reversible enzyme activities provide a regulatory mechanism by activating or deactivating many diverse functions of proteins in various cellular processes. In this review, their structures and substrate recognition are described and summarized, focusing on Ser/Thr protein kinases and protein Ser/Thr phosphatases, and the regulation of protein structures by phosphorylation. The studies reviewed here and the resulting information could contribute to further structural, biochemical, and combined studies on the mechanisms of protein phosphorylation and to drug discovery approaches targeting protein kinases or protein phosphatases.


ChemInform ◽  
2003 ◽  
Vol 34 (37) ◽  
Author(s):  
Philip A. Cole ◽  
Aliya D. Courtney ◽  
Kui Shen ◽  
Zhongsen Zhang ◽  
Yingfeng Qiao ◽  
...  

1999 ◽  
Vol 274 (18) ◽  
pp. 12753-12758 ◽  
Author(s):  
Ian N. Fleming ◽  
Cassondra M. Elliott ◽  
F. Gregory Buchanan ◽  
C. Peter Downes ◽  
John H. Exton

Sign in / Sign up

Export Citation Format

Share Document