Measurements of the Wall Shear Stress in Boundary Layer Flows

1985 ◽  
pp. 277-286 ◽  
Author(s):  
M. Acharya ◽  
M. P. Escudier
1989 ◽  
Vol 111 (4) ◽  
pp. 420-427 ◽  
Author(s):  
L. C. Thomas ◽  
S. M. F. Hasani

Approximations for total stress τ and mean velocity u are developed in this paper for transpired turbulent boundary layer flows. These supplementary boundary-layer approximations are tested for a wide range of near equilibrium flows and are incorporated into an inner law method for evaluating the mean wall shear stress τ0. The testing of the proposed approximations for τ and u indicates good agreement with well-documented data for moderate rates of blowing and suction and pressure gradient. These evaluations also reveal limitations in the familiar logarithmic law that has traditionally been used in the determination of wall shear stress for non-transpired boundary-layer flows. The calculations for τ0 obtained by the inner law method developed in this paper are found to be consistent with results obtained by the modern Reynolds stress method for a broad range of near equilibrium conditions. However, the use of the proposed inner law method in evaluating the mean wall shear stress for early classic near equilibrium flow brings to question the reliability of the results for τ0 reported for adverse pressure gradient flows in the 1968 Stanford Conference Proceedings.


1981 ◽  
Vol 32 (4) ◽  
pp. 354-367 ◽  
Author(s):  
S. Kiske ◽  
V. Vasanta Ram ◽  
K. Pfarr

SummaryThe subject of this paper is the effect of a disturbance to the turbulence structure of the flow on the reading of a Preston tube used to measure wall shear stress. Two kinds of disturbance have been studied experimentally, one caused by reattachment and the other by an abrupt change in wall roughness. The apparent wall shear stress measured by the Preston tube both in channel and boundary layer flows with these kinds of disturbance has been compared with the wall shear stress measured by a sublayer fence. The results give an idea of the magnitude of the error that is likely to arise when the Preston tube is used in a flow with disturbed turbulence structure.


2011 ◽  
Vol 133 (7) ◽  
Author(s):  
Ashraf Al Musleh ◽  
Abdelkader Frendi

Delaying the onset of boundary layer transition has become a major research area in the last few years. This delay can be achieved by either active or passive control techniques. In the present paper, the effects of flexible or compliant structures on boundary layer stability and transition is studied. The Orr-Sommerfeld equation coupled to a beam equation representing the flexible structure is solved for a Blasius type boundary layer. A parametric study consisting of the beam thickness and material properties is carried out. In addition, the effect of fluid wall shear stress on boundary layer stability is analyzed. It is found that high density and high Young modulus materials behave like rigid structures and therefore do not alter the stability characteristic of the boundary layer. Whereas low density and low Young modulus materials are found to stabilize the boundary layer. High values of fluid wall shear stress are found to destabilize the boundary layer. Our results are in good agreement with those published in the literature.


1951 ◽  
Vol 18 (1) ◽  
pp. 95-100
Author(s):  
Donald Ross ◽  
J. M. Robertson

Abstract As an interim solution to the problem of the turbulent boundary layer in an adverse pressure gradient, a super-position method of analysis has been developed. In this method, the velocity profile is considered to be the result of two effects: the wall shear stress and the pressure recovery. These are superimposed, yielding an expression for the velocity profiles which approximate measured distributions. The theory also leads to a more reasonable expression for the wall shear-stress coefficient.


1982 ◽  
Vol 104 (2) ◽  
pp. 150-155 ◽  
Author(s):  
J. E. McAllister ◽  
F. J. Pierce ◽  
M. H. Tennant

Unique, simultaneous direct measurements of the magnitude and direction of the local wall shear stress in a pressure-driven three-dimensional turbulent boundary layer are presented. The flow is also described with an oil streak wall flow pattern, a map of the wall shear stress-wall pressure gradient orientations, a comparison of the wall shear stress directions relative to the directions of the nearest wall velocity as measured with a typical, small boundary layer directionally sensitive claw probe, as well as limiting wall streamline directions from the oil streak patterns, and a comparison of the freestream streamlines and the wall flow streamlines. A review of corrections for direct force sensing shear meters for two-dimensional flows is presented with a brief discussion of their applicability to three-dimensional devices.


AIAA Journal ◽  
1968 ◽  
Vol 6 (12) ◽  
pp. 2432-2434 ◽  
Author(s):  
VICTOR ZAKKAY ◽  
EDGAR ALZNER

Sign in / Sign up

Export Citation Format

Share Document