Representation of ℬ, ℬ’ by Banach Spaces of Operators in a Hilbert Space

Author(s):  
Günther Ludwig
2005 ◽  
Vol 71 (1) ◽  
pp. 107-111
Author(s):  
Fathi B. Saidi

In this paper we adopt the notion of orthogonality in Banach spaces introduced by the author in [6]. There, the author showed that in any two-dimensional subspace F of E, every nonzero element admits at most one orthogonal direction. The problem of existence of such orthogonal direction was not addressed before. Our main purpose in this paper is the investigation of this problem in the case where E is a real Banach space. As a result we obtain a characterisation of Hilbert spaces stating that, if in every two-dimensional subspace F of E every nonzero element admits an orthogonal direction, then E is isometric to a Hilbert space. We conclude by presenting some open problems.


2009 ◽  
Vol 61 (1) ◽  
pp. 124-140 ◽  
Author(s):  
Jan J. Dijkstra ◽  
Jan van Mill

Abstract. The space now known as complete Erdős space was introduced by Paul Erdős in 1940 as the closed subspace of the Hilbert space ℓ2 consisting of all vectors such that every coordinate is in the convergent sequence ﹛0﹜ ∪ ﹛1/n : n ∈ℕ﹜. In a solution to a problem posed by Lex G. Oversteegen we present simple and useful topological characterizations of . As an application we determine the class of factors of . In another application we determine precisely which of the spaces that can be constructed in the Banach spaces ℓp according to the ‘Erdős method’ are homeomorphic to . A novel application states that if I is a Polishable Fσ-ideal on ω, then I with the Polish topology is homeomorphic to either ℤ, the Cantor set 2ω, ℤ × 2ω, or . This last result answers a question that was asked by Stevo Todorčević.


1957 ◽  
Vol 9 ◽  
pp. 435-442
Author(s):  
J. A. Schatz

In 1943 Gelfand and Neumark (3) characterized uniformly closed self-adjoint algebras of bounded operators on a Hilbert space as Banach algebras with an involution (a conjugate linear anti-isomorphism of period two) satisfying several additional conditions. The main purpose of this paper is to point out that if we consider algebras of bounded operators on complex Banach spaces more general than Hilbert space, then we can represent a larger class of algebras by essentially the same methods.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 127
Author(s):  
Lucia Agud ◽  
Jose Manuel Calabuig ◽  
Maria Aranzazu Juan ◽  
Enrique A. Sánchez Pérez

Let ( Ω , Σ , μ ) be a finite measure space and consider a Banach function space Y ( μ ) . We say that a Banach space E is representable by Y ( μ ) if there is a continuous bijection I : Y ( μ ) → E . In this case, it is possible to define an order and, consequently, a lattice structure for E in such a way that we can identify it as a Banach function space, at least regarding some local properties. General and concrete applications are shown, including the study of the notion of the pth power of a Banach space, the characterization of spaces of operators that are isomorphic to Banach lattices of multiplication operators, and the representation of certain spaces of homogeneous polynomials on Banach spaces as operators acting in function spaces.


2015 ◽  
Vol 18 (6) ◽  
Author(s):  
Therese Mur ◽  
Hernán R. Henríquez

AbstractIn this paper we are concerned with the controllability of control systems governed by a fractional differential equation in Banach spaces. Using the properties of the Mittag-Leffler function we generalize to these systems a result of Korobov and Rabakh, which was established for first order systems. We apply our results to study the controllability of a system modeled by a fractional integral equation in a Hilbert space.


2010 ◽  
Vol 03 (01) ◽  
pp. 1-19 ◽  
Author(s):  
Ould Ahmed Mahmoud Sid Ahmed

We introduce the class of m-isometric operators on Banach spaces. This generalizes to Banach space the m-isometric operators on Hilbert space introduced by Agler and Stankus. We establish some basic properties and we introduce the notion of m-invertibility as a natural generalization of the invertibility on Banach spaces.


2002 ◽  
Vol 133 (3) ◽  
pp. 515-530 ◽  
Author(s):  
GUSTAVO A. MUÑOZ ◽  
YANNIS SARANTOPOULOS

In this work we generalize Markov's inequality for any derivative of a polynomial on a real Hilbert space and provide estimates for the second and third derivatives of a polynomial on a real Banach space. Our result on a real Hilbert space answers a question raised by L. A. Harris in his commentary on problem 74 in the Scottish Book [20]. We also provide generalizations of previously obtained inequalities of the Bernstein and Markov-type for polynomials with curved majorants on a real Hilbert space.


Sign in / Sign up

Export Citation Format

Share Document