Variational Principles in Pattern Theory

Author(s):  
W. Güttinger ◽  
G. Dangelmayr
Author(s):  
Alexandru Kristaly ◽  
Vicentiu D. Radulescu ◽  
Csaba Varga

1988 ◽  
Vol 16 (1) ◽  
pp. 18-43 ◽  
Author(s):  
J. T. Oden ◽  
T. L. Lin ◽  
J. M. Bass

Abstract Mathematical models of finite deformation of a rolling viscoelastic cylinder in contact with a rough foundation are developed in preparation for a general model for rolling tires. Variational principles and finite element models are derived. Numerical results are obtained for a variety of cases, including that of a pure elastic rubber cylinder, a viscoelastic cylinder, the development of standing waves, and frictional effects.


Author(s):  
Ulf Grenander ◽  
Michael I. Miller

Pattern Theory provides a comprehensive and accessible overview of the modern challenges in signal, data, and pattern analysis in speech recognition, computational linguistics, image analysis and computer vision. Aimed at graduate students in biomedical engineering, mathematics, computer science, and electrical engineering with a good background in mathematics and probability, the text includes numerous exercises and an extensive bibliography. Additional resources including extended proofs, selected solutions and examples are available on a companion website. The book commences with a short overview of pattern theory and the basics of statistics and estimation theory. Chapters 3-6 discuss the role of representation of patterns via condition structure. Chapters 7 and 8 examine the second central component of pattern theory: groups of geometric transformation applied to the representation of geometric objects. Chapter 9 moves into probabilistic structures in the continuum, studying random processes and random fields indexed over subsets of Rn. Chapters 10 and 11 continue with transformations and patterns indexed over the continuum. Chapters 12-14 extend from the pure representations of shapes to the Bayes estimation of shapes and their parametric representation. Chapters 15 and 16 study the estimation of infinite dimensional shape in the newly emergent field of Computational Anatomy. Finally, Chapters 17 and 18 look at inference, exploring random sampling approaches for estimation of model order and parametric representing of shapes.


Author(s):  
Nicholas Manton ◽  
Nicholas Mee

The book is an inspirational survey of fundamental physics, emphasizing the use of variational principles. Chapter 1 presents introductory ideas, including the principle of least action, vectors and partial differentiation. Chapter 2 covers Newtonian dynamics and the motion of mutually gravitating bodies. Chapter 3 is about electromagnetic fields as described by Maxwell’s equations. Chapter 4 is about special relativity, which unifies space and time into 4-dimensional spacetime. Chapter 5 introduces the mathematics of curved space, leading to Chapter 6 covering general relativity and its remarkable consequences, such as the existence of black holes. Chapters 7 and 8 present quantum mechanics, essential for understanding atomic-scale phenomena. Chapter 9 uses quantum mechanics to explain the fundamental principles of chemistry and solid state physics. Chapter 10 is about thermodynamics, which is built around the concepts of temperature and entropy. Various applications are discussed, including the analysis of black body radiation that led to the quantum revolution. Chapter 11 surveys the atomic nucleus, its properties and applications. Chapter 12 explores particle physics, the Standard Model and the Higgs mechanism, with a short introduction to quantum field theory. Chapter 13 is about the structure and evolution of stars and brings together material from many of the earlier chapters. Chapter 14 on cosmology describes the structure and evolution of the universe as a whole. Finally, Chapter 15 discusses remaining problems at the frontiers of physics, such as the interpretation of quantum mechanics, and the ultimate nature of particles. Some speculative ideas are explored, such as supersymmetry, solitons and string theory.


2020 ◽  
Vol 194 ◽  
pp. 05035
Author(s):  
Manni Wu ◽  
Wenjun Zheng ◽  
Zonglin Liu

Minority settlements have good local landscape features and rich cultural heritage. However, due to complex geographical conditions and lagging economic development, there are many potential security threats in their human settlements. Based on the landscape ecological security pattern theory, aiming at eliminating the practical dilemma of frequent fires and difficult rescue in mountainous settlements in southwestern China, this paper proposes a planning idea to improve the settlement environment’s own disaster resilience and ecological endurance ability through the adjustment of landscape pattern. Taking the reconstruction planning and design of Xiaozhai Village in Longji of Guangxi province as an example, based on the geographical structure and resource characteristics of the village, a four-in-one landscape fire security pattern for mountain settlement is constructed, including building group, road evacuation system, natural fire protection network of water system and biological fire protection forest belt. The study provides a reference for the protection, renewal and re-planning of minority settlement.


2018 ◽  
Vol 24 (2) ◽  
pp. 175-183
Author(s):  
Jean-Claude Ndogmo

Abstract Variational and divergence symmetries are studied in this paper for the whole class of linear and nonlinear equations of maximal symmetry, and the associated first integrals are given in explicit form. All the main results obtained are formulated as theorems or conjectures for equations of a general order. A discussion of the existence of variational symmetries with respect to a different Lagrangian, which turns out to be the most common and most readily available one, is also carried out. This leads to significantly different results when compared with the former case of the transformed Lagrangian. The latter analysis also gives rise to more general results concerning the variational symmetry algebra of any linear or nonlinear equations.


Sign in / Sign up

Export Citation Format

Share Document