A Cartilage-Mimicking T-Cell Epitope on a 65K Mycobacterial Heat-Shock Protein: Adjuvant Arthritis as a Model for Human Rheumatoid Arthritis

Author(s):  
W. van Eden ◽  
E. J. M. Hogervorst ◽  
E. J. Hensen ◽  
R. van der Zee ◽  
J. D. A. van Embden ◽  
...  
1991 ◽  
Vol 88 (8) ◽  
pp. 3088-3091 ◽  
Author(s):  
D. Elias ◽  
T. Reshef ◽  
O. S. Birk ◽  
R. van der Zee ◽  
M. D. Walker ◽  
...  

Vaccine ◽  
2006 ◽  
Vol 24 (42-43) ◽  
pp. 6555-6563 ◽  
Author(s):  
Hila Amir-Kroll ◽  
Luis Riveron ◽  
Maria E. Sarmiento ◽  
Gustavo Sierra ◽  
Armando Acosta ◽  
...  

1994 ◽  
Vol 72 (3) ◽  
pp. 215-221 ◽  
Author(s):  
P. W. ROCHE ◽  
P. W. PEAKE ◽  
M. P. DAVENPORT ◽  
W. J. BRITTON

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253918
Author(s):  
Jelena Repac ◽  
Marija Mandić ◽  
Tanja Lunić ◽  
Bojan Božić ◽  
Biljana Božić Nedeljković

Autoimmune diseases, often triggered by infection, affect ~5% of the worldwide population. Rheumatoid Arthritis (RA)–a painful condition characterized by the chronic inflammation of joints—comprises up to 20% of known autoimmune pathologies, with the tendency of increasing prevalence. Molecular mimicry is recognized as the leading mechanism underlying infection-mediated autoimmunity, which assumes sequence similarity between microbial and self-peptides driving the activation of autoreactive lymphocytes. T lymphocytes are leading immune cells in the RA-development. Therefore, deeper understanding of the capacity of microorganisms (both pathogens and commensals) to trigger autoreactive T cells is needed, calling for more systematic approaches. In the present study, we address this problem through a comprehensive immunoinformatics analysis of experimentally determined RA-related T cell epitopes against the proteomes of Bacteria, Fungi, and Viruses, to identify the scope of organisms providing homologous antigenic peptide determinants. By this, initial homology screening was complemented with de novo T cell epitope prediction and another round of homology search, to enable: i) the confirmation of homologous microbial peptides as T cell epitopes based on the predicted binding affinity to RA-related HLA polymorphisms; ii) sequence similarity inference for top de novo T cell epitope predictions to the RA-related autoantigens to reveal the robustness of RA-triggering capacity for identified (micro/myco)organisms. Our study reveals a much larger repertoire of candidate RA-triggering organisms, than previously recognized, providing insights into the underestimated role of Fungi in autoimmunity and the possibility of a more direct involvement of bacterial commensals in RA-pathology. Finally, our study pinpoints Endoplasmic reticulum chaperone BiP as the most potent (most likely mimicked) RA-related autoantigen, opening an avenue for identifying the most potent autoantigens in a variety of different autoimmune pathologies, with possible implications in the design of next-generation therapeutics aiming to induce self-tolerance by affecting highly reactive autoantigens.


Sign in / Sign up

Export Citation Format

Share Document