Morphological Basis of Information Processing in the Olfactory Bulb

Author(s):  
N. Halasz
Author(s):  
Thomas P. Eiting ◽  
Matt Wachowiak

AbstractSniffing—the active control of breathing beyond passive respiration—is used by mammals to modulate olfactory sampling. Sniffing allows animals to make odor-guided decisions within ~200 ms, but animals routinely engage in bouts of high-frequency sniffing spanning several seconds; the impact of such repeated odorant sampling on odor representations remains unclear. We investigated this question in the mouse olfactory bulb, where mitral and tufted cells (MTCs) form parallel output streams of odor information processing. To test the impact of repeated odorant sampling on MTC responses, we used two-photon imaging in anesthetized male and female mice to record activation of MTCs while precisely varying inhalation frequency. A combination of genetic targeting and viral expression of GCaMP6 reporters allowed us to access mitral (MC) and superficial tufted cell (sTC) subpopulations separately. We found that repeated odorant sampling differentially affected responses in MCs and sTCs, with MCs showing more diversity than sTCs over the same time period. Impacts of repeated sampling among MCs included both increases and decreases in excitation, as well as changes in response polarity. Response patterns across ensembles of simultaneously-imaged MCs reformatted over time, with representations of different odorants becoming more distinct. MCs also responded differentially to changes in inhalation frequency, whereas sTC responses were more uniform over time and across frequency. Our results support the idea that MCs and TCs comprise functionally distinct pathways for odor information processing, and suggest that the reformatting of MC odor representations by high-frequency sniffing may serve to enhance the discrimination of similar odors.


Neuron ◽  
2010 ◽  
Vol 65 (6) ◽  
pp. 912-926 ◽  
Author(s):  
Jie Tan ◽  
Agnès Savigner ◽  
Minghong Ma ◽  
Minmin Luo

1987 ◽  
Vol 510 (1 Olfaction and) ◽  
pp. 400-402 ◽  
Author(s):  
J. S. KAUER ◽  
K. A. HAMILTON

2017 ◽  
Vol 117 (3) ◽  
pp. 1342-1351 ◽  
Author(s):  
Wayne I. Doyle ◽  
Julian P. Meeks

Norepinephrine (NE) release has been linked to experience-dependent plasticity in many model systems and brain regions. Among these is the rodent accessory olfactory system (AOS), which is crucial for detecting and processing socially relevant environmental cues. The accessory olfactory bulb (AOB), the first site of chemosensory information processing in the AOS, receives dense centrifugal innervation by noradrenergic fibers originating in the locus coeruleus. Although NE release has been linked to behavioral plasticity through its actions in the AOB, the impacts of noradrenergic modulation on AOB information processing have not been thoroughly studied. We made extracellular single-unit recordings of AOB principal neurons in ex vivo preparations of the early AOS taken from adult male mice. We analyzed the impacts of bath-applied NE (10 μM) on spontaneous and stimulus-driven activity. In the presence of NE, we observed overall suppression of stimulus-driven neuronal activity with limited impact on spontaneous activity. NE-associated response suppression in the AOB came in two forms: one that was strong and immediate (21%) and one other that involved gradual, stimulus-dependent monotonic response suppression (47%). NE-associated changes in spontaneous activity were more modest, with an overall increase in spontaneous spike frequency observed in 25% of neurons. Neurons with increased spontaneous activity demonstrated a net decrease in chemosensory discriminability. These results reveal that noradrenergic signaling in the AOB causes cell-specific changes in chemosensory tuning, even among similar projection neurons. NEW & NOTEWORTHY Norepinephrine (NE) is released throughout the brain in many behavioral contexts, but its impacts on information processing are not well understood. We studied the impact of NE on chemosensory tuning in the mouse accessory olfactory bulb (AOB). Electrophysiological recordings from AOB neurons in ex vivo preparations revealed that NE, on balance, inhibited mitral cell responses to chemosensory cues. However, NE’s effects were heterogeneous, indicating that NE signaling reshapes AOB output in a cell- and stimulus-specific manner.


2018 ◽  
Vol 596 (4) ◽  
pp. 717-733 ◽  
Author(s):  
Natalie Rotermund ◽  
Svenja Winandy ◽  
Timo Fischer ◽  
Kristina Schulz ◽  
Torsten Fregin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document