Cyclic-GMP Phosphodiesterase in Photoreceptor Cells in Limulus Ventral Eye

Author(s):  
M. Inoue ◽  
K. Ackermann ◽  
J. E. Brown
Science ◽  
1977 ◽  
Vol 196 (4290) ◽  
pp. 664-666 ◽  
Author(s):  
R. Lolley ◽  
D. Farber ◽  
M. Rayborn ◽  
J. Hollyfield

1994 ◽  
Vol 662 (1-2) ◽  
pp. 268-272 ◽  
Author(s):  
Tsukasa Gotow ◽  
Takako Nishi ◽  
Hiromasa Kijima

1999 ◽  
Vol 202 (1) ◽  
pp. 13-20 ◽  
Author(s):  
O. Schmachtenberg ◽  
G. Bicker

Nitric oxide (NO) is a membrane-permeant messenger molecule which activates the cyclic GMP (cGMP)-synthesizing enzyme soluble guanylyl cyclase. Using cytochemical techniques, we recently reported NO-induced cGMP immunoreactivity in the photoreceptor cells of the compound eye of the locust Schistocerca gregaria and also detected NADPH diaphorase staining, a marker of NO synthase, in a subset of the monopolar cells of the lamina. By recording the corneal electroretinogram (ERG), we found that the application of neurochemicals that raise NO/cGMP levels in the optic lobe increased the ERG amplitude, whereas the experimental reduction of NO levels caused a decrease in the response to light. An increase in the light response was also found in intracellular recordings after application of a NO donor, suggesting that the NO-induced changes in the ERG are not caused by changes in the resistive isolation of the retina. Our cytochemical and electrophysiological data are both consistent with the hypothesis that NO synthesized in monopolar cells is a retrograde messenger to the presynaptic photoreceptor neurones.


1995 ◽  
Vol 12 (3) ◽  
pp. 493-500 ◽  
Author(s):  
Akiko Yoshida ◽  
Nikolay Pozdnyakov ◽  
Loan Dang ◽  
Stephen M. Orselli ◽  
Venkat N. Reddy ◽  
...  

AbstractNitric oxide (NO) is known to be synthesized in several tissues and to increase the formation of cyclic GMP through the activation of soluble guanylate cyclases. Since cyclic GMP plays an important role in visual transduction, we investigated the presence of nitric oxide synthesizing activity in retinal rod outer segments. Bovine rod outer segments were isolated intact and separated into membrane and cytosolic fractions. Nitric oxide synthase activity was assayed by measuring the conversion of L-arginine to L-citrulline. Both membrane and cytosolic fractions were active in the presence of calcium and calmodulin. The activity in both fractions was stimulated by the nitric oxide synthase cofactors FAD, FMN, and tetrahydrobiopterin and inhibited by the L-arginine analog, L-monomethyl arginine. The Km for L-arginine was similar, about 5 μM for the enzyme in both fractions. However, the two fractions differed in their calcium/calmodulin dependence: the membrane fraction exhibited basal activity even in the absence of added calcium and calmodulin while the cytosolic fraction was inactive. But the activity increased in both fractions when supplemented with calcium/calmodulin: in membranes from about 40 to 110 fmol/min/mg of protein and in the cytosol from near zero to about 350 fmol/min/mg of protein in assays carried out at 0.3 μM L-arginine. The two enzymes also responded differently to detergent: the activity of the membrane enzyme was doubled by Triton X-100 while that of the cytosolic enzyme was unaffected. These results show that NO is produced by cytosolic and membrane-associated enzymes with distinguishable properties. Investigations on the purity of isolated ROS showed that about 50% of the NOS activity is endogenous to the outer segments, and that the rest is due to membrane vesicles rich in Na, K-ATPase activity. If and how NO influences the rod outer segment physiology remains to be investigated.


1992 ◽  
Vol 283 (1) ◽  
pp. 273-279 ◽  
Author(s):  
N O Artemyev ◽  
H E Hamm

Light-activated cyclic GMP-phosphodiesterase (PDE) is the key effector enzyme of vertebrate photoreceptor cells which regulates the level of the internal transmitter cyclic GMP. PDE consists of catalytic P alpha and P beta subunits, and two copies of inhibitory P gamma subunit. The two P gamma subunits block the enzyme's activity in the dark and are removed by the alpha-subunit of transducin (alpha 1) upon light-activation of photoreceptor cells. Here we have examined the role of various regions of P gamma, the N-terminal, the central cationic and the C-terminal regions, in interaction with the catalytic subunits of PDE. N-Terminal truncation of P gamma (12-87-P gamma) did not change the potency of PDE inhibition, and thus we conclude that the P gamma N-terminal region is not critical for P gamma-P alpha beta interaction. The central region, 24-46-P gamma, participates in interaction with the catalytic P alpha beta subunits. A synthetic peptide corresponding to this site inhibited approximately 50% of trypsin-activated PDE (tPDE) (Ki approximately 15 microM) and competed with P gamma for inhibition of tPDE. We demonstrated, by using h.p.l.c. gel filtration, that 125I-Tyr-24-46-P gamma peptide bound with high affinity to tPDE, but not to P alpha beta gamma 2. The C-terminal region of 46-87-P gamma was found to be the major region involved in inhibition of PDE. It fully inhibited tPDE with a Ki of approximately 0.8 microM. It also bound to tPDE, but not P alpha beta gamma 2, in h.p.l.c. gel-filtration experiments. In addition, P gamma was cross-linked by p-phenylenedimaleimide to both P alpha and P beta, as was shown by using subunit-specific anti-P alpha, -P beta and -P gamma antibodies. Cys68 of P gamma, which presumably participates in cross-linking, is located near the P gamma C-terminus. These data provide evidence for two regions of P gamma that interact with, and inhibit, P alpha beta. The central region, 24-46 P gamma, is important in binding, but inhibits PDE only weakly, whereas the C-terminal region is most important for PDE inhibition. These results help to explain the well-known fact that P gamma trypsin-activation and C-terminal truncation both lead to PDE activation. Furthermore, our findings on the mechanism of PDE inhibition of P gamma are relevant for understanding the mechanism of PDE activation by transducin.


Author(s):  
W. Krebs ◽  
I. Krebs

Various inclusion bodies occur in vertebrate retinal photoreceptor cells. Most of them are membrane bound and associated with phagocytosis or they are age related residual bodies. We found an additional inclusion body in foveal cone cells of the baboon (Papio anubis) retina.The eyes of a 15 year old baboon were fixed by immersion in cacodylate buffered glutaraldehyde (2%)/formaldehyde (2%) as described in detail elsewhere . Pieces of retina from various locations, including the fovea, were embedded in epoxy resin such that radial or tangential sections could be cut.Spindle shaped inclusion bodies were found in the cytoplasm of only foveal cones. They were abundant in the inner segments, close to the external limiting membrane (Fig. 1). But they also occurred in the outer fibers, the perikarya, and the inner fibers (Henle’s fibers) of the cone cells. The bodies were between 0.5 and 2 μm long. Their central diameter was 0.2 to 0. 3 μm. They always were oriented parallel to the long axis of the cone cells. In longitudinal sections (Figs. 2,3) they seemed to have a fibrous skeleton that, in cross sections, turned out to consist of plate-like (Fig.4) and tubular profiles (Fig. 5).


Author(s):  
Maria Anna Pabst

In addition to the compound eyes, honeybees have three dorsal ocelli on the vertex of the head. Each ocellus has about 800 elongated photoreceptor cells. They are paired and the distal segment of each pair bears densely packed microvilli forming together a platelike fused rhabdom. Beneath a common cuticular lens a single layer of corneagenous cells is present.Ultrastructural studies were made of the retina of praepupae, different pupal stages and adult worker bees by thin sections and freeze-etch preparations. In praepupae the ocellar anlage consists of a conical group of epidermal cells that differentiate to photoreceptor cells, glial cells and corneagenous cells. Some photoreceptor cells are already paired and show disarrayed microvilli with circularly ordered filaments inside. In ocelli of 2-day-old pupae, when a retinogenous and a lentinogenous cell layer can be clearly distinguished, cell membranes of the distal part of two photoreceptor cells begin to interdigitate with each other and so start to form the definitive microvilli. At the beginning the microvilli often occupy the whole width of the developing rhabdom (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document