Plume effects at hypersonic speeds

Shock Waves ◽  
1992 ◽  
pp. 575-582
Author(s):  
J. L. Stollery ◽  
N. P. B. Sperinck ◽  
P. Atcliffe
Keyword(s):  
2016 ◽  
Vol 47 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Mikhail Aleksandrovich Pugach ◽  
Alexander Aleksandrovich Ryzhov ◽  
Alexander Vitalievich Fedorov

AIAA Journal ◽  
2016 ◽  
Vol 54 (2) ◽  
pp. 458-468 ◽  
Author(s):  
Gisu Park ◽  
Sudhir L. Gai ◽  
Andrew J. Neely

The use of the blast-wave analogy, as an aid to the interpretation of experimental data on the motion of a fluid past an obstacle at hypersonic speeds, has led to the theoretical study of its role in an asymptotic expansion of the solution to the governing equations at large distances downstream of the body. In all attempts to set up such an expansion it has proved necessary to divide the flow régime into two parts, an outer part dominated by the blast wave and an inner part consisting of streamlines which, originally, pass close by the body. The matching of these two regions is apparently only possible if a certain integral vanishes. In the present paper a numerical integration, in one particular set of circumstances, is carried out to test the validity of the asymptotic expansion proposed. Formally, an unsteady problem is tackled, for ease of computation, but the steady analogue follows immediately and is of exactly the form discussed in the earlier investigations. It is found that the main results are in line with the theory and that the integral in question is indistinguishable from zero. However, a deeper investigation of the asymptotic expansion shows that, for an expansion of the type envisaged, an infinite set of integrals must each vanish. The next integral does not appear to be zero according to our computations but this result is not believed to be conclusive. Assuming that all the integrals do vanish, then it appears that the inner layer, which although inviscid, has many of the characteristics of a viscous boundary layer, has the addi­tional, surprising property that it can exert no direct influence on the outer flow at large distances downstream of the body.


2016 ◽  
Author(s):  
A. V. Vaganov ◽  
A. Yu. Noev ◽  
V. I. Plyashechnik ◽  
V. N. Radchenko ◽  
A. S. Skuratov ◽  
...  

2020 ◽  
pp. 45-51
Author(s):  
Pavel Timofeev ◽  
◽  
Vladimir Panchenko ◽  
Sergey Kharchyk ◽  
◽  
...  

This study presents flow simulation over the reentry capsule at supersonic and hypersonic speeds. Numerical algorithms solve for the CFD method, which is produced using help ANSYS Fluent 19.2. The using GPU core to get a solution faster. The main purpose – flow simulation and numerical analysis reentry capsule; understand the behavior of supersonic and hypersonic flow and its effect on the reentry capsule; compare temperature results for the range Mach numbers equals 2–6. This study showed results on velocity counters, on temperature counters and vector of velocity for range Mach numbers equals 2–6. This study demonstrates the importance of understanding the effects of shock waves and illustrates how the shock wave changes as the Mach number increases. For every solves, the mesh had adapted for pressure gradient and velocity gradient to get the exact solution. As a result of the obtained solution, it is found that a curved shock wave appears in front of the reentry capsule. The central part of which is a forward shock. An angular expansion process is observed, which is a modified picture of the Prandtl- Mayer flow that occurs in a supersonic flow near the sharp edge of the expanding region. It is revealed that with an increase in the Mach number, the shock wave approaches the bottom of the reentry capsule, and there is also a slope of the shock to the flow direction, with an increase in the Mach number. The relevance and significance of this problem for the design of new and modernization of old reentry capsules.


Sign in / Sign up

Export Citation Format

Share Document