Leading Edge Effect in Laminar Boundary Layer Excitation by Sound

1980 ◽  
pp. 321-331 ◽  
Author(s):  
P. Leehey ◽  
P. Shapiro

1987 ◽  
Author(s):  
Clifford J. Obara ◽  
C. P. van Dam

In this paper, foil and planform parameters which govern the level of viscous drag produced by the keel of a sailing yacht are discussed. It is shown that the application of laminar boundary-Layer flow offers great potential for increased boat speed resulting from the reduction in viscous drag. Three foil shapes have been designed and it is shown that their hydro­dynamic characteristics are very much dependent on location and mode of boundary-Layer transition. The planform parameter which strongly affects the capabilities of the keel to achieve laminar flow is lea ding-edge sweep angle. The two significant phenomena related to keel sweep angle which can cause premature transition of the laminar boundary layer are crossflow instability and turbulent contamination of the leading-edge attachment line. These flow phenomena and methods to control them are discussed in detail. The remaining factors that affect the maintainability of laminar flow include surface roughness, surface waviness, and freestream turbulence. Recommended limits for these factors are given to insure achievability of laminar flow on the keel. In addition, the application of a simple trailing-edge flap to improve the hydrodynamic characteristics of a foil at moderate-to-high leeway angles is studied.



1960 ◽  
Vol 64 (599) ◽  
pp. 668-672 ◽  
Author(s):  
T. W. F. Moore

Summary:The results of experiments on the reattachment of a laminar boundary layer, separating from a rearward facing step in a flat plate aerofoil, are correlated with the properties of the short leading edge bubble which forms on thin aerofoils near the stall.The experiments, comprising pressure measurements, Pitot explorations, liquid film and smoke studies, indicate that for all Reynolds numbers above the value given by the Owen-KIanfer criterion the reattachment is turbulent behind a stationary air reverse flow vortex bubble. It is also found that the reattachment is laminar for Reynolds numbers below the critical, which further supports Crabtree's interpretation of the Owen-KIanfer criterion in terms of the condition for the growth of turbulent bursts.



1988 ◽  
Vol 186 ◽  
pp. 223-241 ◽  
Author(s):  
B. Y. Wang ◽  
I. I. Glass

The compressible laminar boundary-layer flows of a dilute gas-particle mixture over a semi-infinite flat plate are investigated analytically. The governing equations are presented in a general form where more reasonable relations for the two-phase interaction and the gas viscosity are included. The detailed flow structures of the gas and particle phases are given in three distinct regions: the large-slip region near the leading edge, the moderate-slip region and the small-slip region far downstream. The asymptotic solutions for the two limiting regions are obtained by using a series-expansion method. The finite-difference solutions along the whole length of the plate are obtained by using implicit four-point and six-point schemes. The results from these two methods are compared and very good agreement is achieved. The characteristic quantities of the boundary layer are calculated and the effects on the flow produced by the particles are discussed. It is found that in the case of laminar boundary-layer flows, the skin friction and wall heat-transfer are higher and the displacement thickness is lower than in the pure-gas case alone. The results indicate that the Stokes-interaction relation is reasonable qualitatively but not correct quantitatively and a relevant non-Stokes relation of the interaction between the two phases should be specified when the particle Reynolds number is higher than unity.



1989 ◽  
Vol 33 (02) ◽  
pp. 145-155
Author(s):  
Clifford J. Obara ◽  
C. P. van Dam

Foil and planform parameters which govern the level of viscous drag produced by the keel of a sailing yacht are discussed. It is shown that the application of laminar boundary-layer flow offers great potential for increased boat speed resulting from the reduction in viscous drag. Three foil shapes have been designed and it is shown that their hydrodynamic characteristics are very much dependent on location and mode of boundary-layer transition. The planform parameter which strongly affects the capabilities of the keel to achieve laminar flow is leading-edge sweep angle. The two significant phenomena related to keel sweep angle which can cause premature transition of the laminar boundary layer are crossflow instability and turbulent contamination of the leading-edge attachment line. These flow phenomena and methods to control them are discussed in detail. The remaining factors that affect the maintainability of laminar flow include surface roughness, surface waviness, and freestream turbulence. Recommended limits for these factors are given to insure achievability of laminar flow on the keel. In addition, the application of a simple trailing-edge flap to improve the hydrodynamic characteristics of a foil at moderate-to-high leeway angles is studied.





Author(s):  
Ladan Momayez ◽  
Marouen Dghim ◽  
Mohsen Ferchichi ◽  
Sylvain Graveline

This work reports an experimental investigation on the response of a planar wake generated by a profiled flat plate to various upstream flow conditions. A tripping wire was placed on the upper side of the flat plate just downstream of the leading edge of the plate that resulted in asymmetric separating shear layers at the trailing edge. The near wake asymmetry is compared to the symmetrical case at two different Reynolds numbers. Two asymmetric initial conditions resulted, namely, laminar boundary layer on the lower side and a turbulent boundary layer on the upper side, and a turbulent boundary layer on the lower side and tripped turbulent boundary layer on the upper surface. The near wake dynamics were investigated under the effects of the degree of asymmetry using hot-wire anemometry and flow visualizations. The measurements showed when one of the two boundary layers was tripped, the wake shifted towards the tripped side and wake spreading was found to be larger than in the case of the symmetrical wake with the effect being more pronounced in the asymmetric laminar wake. Self-similarity of the asymmetrical wakes was established by properly selecting appropriate similarity variables however, the similarity of the wake was less evident in the tripped laminar boundary layer case. Convection velocity, Uc, of the Von Karman large eddies, estimated using processed flow visualization images seemed to increase with increased Reynolds number and with increased upstream momentum thickness. In the symmetric laminar wake, Uc/U∞ increases from 0.2 and reached an asymptotic value of about 0.85 further downstream. In the presence of perturbation, Uc/U∞ attained a constant value of about 0.83 further downstream compared to the symmetric case. For the turbulent wake, however, asymmetry of the turbulence levels was found to increase the convection speed compared to both the laminar wake and the symmetric turbulent wake reaching a constant value nearly at the same downstream position for both the symmetric and asymmetric turbulent wake.



1988 ◽  
Vol 197 ◽  
pp. 389-414 ◽  
Author(s):  
R. Sankaran ◽  
M. Sokolov ◽  
R. A. Antonia

Substructures within a turbulent spot which develops in a slightly heated laminar boundary layer have been identified using arrays of cold wires aligned in either a streamwise direction or in a direction normal to the wall. At any given streamwise distance from the spot origin, histograms of the number of detected substructures exhibit a peak, defining the most probable spot or the spot with the most likely number of substructures. The number of substructures in the most probable spot increases with streamwise distance but all substructures are convected at approximately the same velocity for any given distance from the wall. This velocity is approximately equal to that of the leading edge of the spot and increases slightly with distance from the wall. The increase in the number of substructures accounts for the streamwise growth of the spot. A simple relation is derived for determining the number of substructures at a particular streamwise station and a geometrical construction is proposed for identifying the origin of a new substructure. There is sufficient evidence for suggesting that the new substructures are formed near the trailing edge of the spot. The convection velocity, inclination and lengthscales of the substructures compare favourably with the corresponding characteristics of hairpin vortices.



1982 ◽  
Vol 104 (1) ◽  
pp. 105-114 ◽  
Author(s):  
G. Kuiper

The influence of the boundary layer and of the nuclei content of the fluid on cavitation inception is investigated. Two models of ship propellers, displaying sheet cavitation and bubble cavitation respectively, are used. Generation of additional nuclei is obtained by electrolysis. It is shown that nuclei are necessary to create sheet cavitation when the laminar boundary layer separates. When the boundary layer is laminar, however, the absence of sheet cavitation is very persistent and independent of the nuclei content. Application of roughness at the leading edge of the propeller blades generates sheet cavitation independent of the nuclei content. Bubble cavitation is strongly affected by the nuclei content of the water. Roughness at the leading edge can indirectly affect bubble cavitation when nuclei are generated by the roughness elements.





Sign in / Sign up

Export Citation Format

Share Document