bubble cavitation
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 12)

H-INDEX

20
(FIVE YEARS 2)

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 113
Author(s):  
Xiufang Liu ◽  
Wenjun Zhang ◽  
Yanshu Jing ◽  
Shasha Yi ◽  
Umar Farooq ◽  
...  

Sonoporation employs ultrasound accompanied by microbubble (MB) cavitation to induce the reversible disruption of cell membranes and has been exploited as a promising intracellular macromolecular delivery strategy. Due to the damage to cells resulting from strong cavitation, it is difficult to balance efficient delivery and high survival rates. In this paper, a traveling surface acoustic wave (TSAW) device, consisting of a TSAW chip and a polydimethylsiloxane (PDMS) channel, was designed to explore single-cell sonoporation using targeted microbubbles (TMBs) in a non-cavitation regime. A TSAW was applied to precisely manipulate the movement of the TMBs attached to MDA-MB-231 cells, leading to sonoporation at a single-cell level. The impact of input voltage and the number of TMBs on cell sonoporation was investigated. In addition, the physical mechanisms of bubble cavitation or the acoustic radiation force (ARF) for cell sonoporation were analyzed. The TMBs excited by an ARF directly propelled cell membrane deformation, leading to reversible perforation in the cell membrane. When two TMBs adhered to the cell surface and the input voltage was 350 mVpp, the cell sonoporation efficiency went up to 83%.


2021 ◽  
pp. 76-114
Author(s):  
Yves Lecoffre ◽  
M.M. Oberai ◽  
V.H. Arakeri
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Insu Lee ◽  
Sunho Park ◽  
Woochan Seok ◽  
Shin Hyung Rhee

In this study, a cavitation model for propeller analysis was selected using computational fluid dynamics (CFD), and the model was applied to the cavitating flow around the Potsdam Propeller Test Case (PPTC) propeller. The cavitating flow around the NACA 66 hydrofoil was analyzed to select a cavitation model suitable for propeller analysis among various cavitation models. The present and the experimental results were compared to select a cavitation model that would be applied to propeller cavitation analysis. Although the CFD results using the selected cavitation model showed limitations in estimating some of the foam cavitation and bubble cavitation identified in the experimental results, it was identified that foam cavitation and sheet cavitation around the tip were well simulated.


2021 ◽  
Vol 314 ◽  
pp. 197-201
Author(s):  
So Young Han ◽  
Nagendra Prasad Yerriboina ◽  
Bichitra Nanda Sahoo ◽  
Bong Kyun Kang ◽  
Andreas Klipp ◽  
...  

Megasonic cleaning is one of the promising technologies to remove the particles during semiconductor processing. Acoustic bubble cavitation plays a key role in removing the particles. In this work, the effect of an anionic surfactant sodium dodecyl sulfate (SDS) on a bubble in the presence of hydrogen dissolved DIW water was studied. The bubble dynamics were observed using a high-speed camera. It was found that with the increase of surfactant the bubble characteristics were changed very significantly. Several parameters affecting the bubble dynamics were investigated.


2020 ◽  
Vol 101 (2) ◽  
Author(s):  
P. Rosales-Pelaez ◽  
I. Sanchez-Burgos ◽  
C. Valeriani ◽  
C. Vega ◽  
E. Sanz

2019 ◽  
Vol 9 (24) ◽  
pp. 5292
Author(s):  
Peng-li Zhang ◽  
Shu-yu Lin

In liquids, bubbles usually exist in the form of bubble groups. Due to their interaction with other bubbles, the resonance frequency of bubbles decreases. In this paper, the resonance frequency of bubbles in a columnar bubble group is obtained by linear simplification of the bubbles’ dynamic equation. The correction coefficient between the resonance frequency of the bubbles in the columnar bubble group and the Minnaert frequency of a single bubble is given. The results show that the resonance frequency of bubbles in the bubble group is affected by many parameters such as the initial radius of bubbles, the number of bubbles in the bubble group, and the distance between bubbles. The initial radius of the bubbles and the distance between bubbles are found to have more significant influence on the resonance frequency of the bubbles. When the distance between bubbles increases to 20 times the bubbles’ initial radius, the coupling effect between bubbles can be ignored, and after that the bubbles’ resonance frequency in the bubble group tends to the resonance frequency of a single bubble’s resonance frequency. Fluent software is used to simulate the bubble growth, shrinkage, and collapse of five and seven bubbles under an ultrasonic field. The simulation results show that when the bubble breaks, the two bubbles at the outer field first begin to break and form a micro-jet along the axis line of the bubbles. Our methods and conclusions will provide a reference for further simulations and indicate the significance of the prevention or utilization of cavitation.


Sign in / Sign up

Export Citation Format

Share Document