Thermal Boundary Layers with Coupling of the Velocity Field to the Temperature Field

2000 ◽  
pp. 231-289 ◽  
Author(s):  
Herrmann Schlichting ◽  
Klaus Gersten
1968 ◽  
Vol 64 (3) ◽  
pp. 849-870
Author(s):  
Milan Ð. Ðurić

AbstractThis paper is dedicated to the question of solving unsteady thermal boundary-layers in the case of two-dimensional low-speed flows, provided that the difference between the temperature of the stream and that of the wall is not too great (so that the density is sensibly constant) and that the change in the wall temperature Tw (x, t) takes place at the same instant as the body is set into motion. The velocity boundary-layer is uncoupled from the thermal one and can be considered separately. In paper (2) is given the method for obtaining the velocity field (u, v). The temperature field T depends on the velocity field and can be obtained only after this one. The method (2) being available for this purpose assuming the difference between the temperature of the wall Tw (x, t) and that of the main-stream T∞ in the form ofwhere S(x) and θ(t) are arbitrary functions of x respectively t, satisfying certain conditions required by the method.


2019 ◽  
Vol 20 (5) ◽  
pp. 502 ◽  
Author(s):  
Aaqib Majeed ◽  
Ahmed Zeeshan ◽  
Farzan Majeed Noori ◽  
Usman Masud

This article is focused on Maxwell ferromagnetic fluid and heat transport characteristics under the impact of magnetic field generated due to dipole field. The viscous dissipation and heat generation/absorption are also taken into account. Flow here is instigated by linearly stretchable surface, which is assumed to be permeable. Also description of magneto-thermo-mechanical (ferrohydrodynamic) interaction elaborates the fluid motion as compared to hydrodynamic case. Problem is modeled using continuity, momentum and heat transport equation. To implement the numerical procedure, firstly we transform the partial differential equations (PDEs) into ordinary differential equations (ODEs) by applying similarity approach, secondly resulting boundary value problem (BVP) is transformed into an initial value problem (IVP). Then resulting set of non-linear differentials equations is solved computationally with the aid of Runge–Kutta scheme with shooting algorithm using MATLAB. The flow situation is carried out by considering the influence of pertinent parameters namely ferro-hydrodynamic interaction parameter, Maxwell parameter, suction/injection and viscous dissipation on flow velocity field, temperature field, friction factor and heat transfer rate are deliberated via graphs. The present numerical values are associated with those available previously in the open literature for Newtonian fluid case (γ 1 = 0) to check the validity of the solution. It is inferred that interaction of magneto-thermo-mechanical is to slow down the fluid motion. We also witnessed that by considering the Maxwell and ferrohydrodynamic parameter there is decrement in velocity field whereas opposite behavior is noted for temperature field.


2019 ◽  
Vol 880 ◽  
pp. 743-763 ◽  
Author(s):  
Géraldine Davis ◽  
Thierry Dauxois ◽  
Timothée Jamin ◽  
Sylvain Joubaud

The current paper presents an experimental study of the energy budget of a two-dimensional internal wave attractor in a trapezoidal domain filled with uniformly stratified fluid. The injected energy flux and the dissipation rate are simultaneously measured from a two-dimensional, two-component, experimental velocity field. The pressure perturbation field needed to quantify the injected energy is determined from the linear inviscid theory. The dissipation rate in the bulk of the domain is directly computed from the measurements, while the energy sink occurring in the boundary layers is estimated using the theoretical expression for the velocity field in the boundary layers, derived recently by Beckebanze et al. (J. Fluid Mech., vol. 841, 2018, pp. 614–635). In the linear regime, we show that the energy budget is closed, in the steady state and also in the transient regime, by taking into account the bulk dissipation and, more importantly, the dissipation in the boundary layers, without any adjustable parameters. The dependence of the different sources on the thickness of the experimental set-up is also discussed. In the nonlinear regime, the analysis is extended by estimating the dissipation due to the secondary waves generated by triadic resonant instabilities, showing the importance of the energy transfer from large scales to small scales. The method tested here on internal wave attractors can be generalized straightforwardly to any quasi-two-dimensional stratified flow.


Sign in / Sign up

Export Citation Format

Share Document