Erstellung von Teilefamilien (Part Families)

Author(s):  
Michael Schabacker
Keyword(s):  
Author(s):  
Satyandra K. Gupta

Abstract Sheet metal bending press-brakes can be setup to produce more than one type of parts without requiring a setup change. To exploit this flexibility, we need setup planning techniques to generate press-brake setups that can be shared among many different parts. In this paper, we describe an algorithm which partitions a given set of parts into setup compatible part families which can be produced on the same setup. Our algorithm is based on a two step approach. The first step is to identify setup constraints for each individual part. The second step is to form setup-compatible part families based on the compatibility of setup constraints. We expect that by producing many different types of parts on the same setup, we can significantly reduce the required number of setups and enable cost effective small batch manufacturing.


2003 ◽  
Vol 14 (2) ◽  
pp. 123-137 ◽  
Author(s):  
Hassan M. Selim ◽  
Reda M.S. Abdel Aal ◽  
Araby I. Mahdi

Author(s):  
Amit Bhandwale ◽  
Thenkurussi Kesavadas

The identification of part families and machine groups that form the cells is a major step in the development of a cellular manufacturing system. The primary input to cell formation algorithms is the machine-part incidence matrix, which is a binary matrix representing machining requirements of parts in various part families. One common assumption of these cell formation algorithms is that the product mix remains stable over a period of time. In today’s world, the market demand is being shaped by consumers, resulting in a highly volatile market. This has given rise to a class of products characterized by low volume and high variety, which presents engineers with lots of problems and decisions in the early stages of product development. This can have an adverse effect on manufacturing like high investment in new machinery and material handling equipment, long setup times, high tooling costs, increased intercellular movement and excessive scrap which increases the cost without adding any value to the parts. Any change to the product mix results in a change in the machine-part incidence matrix, which may change the part families and machine groups, which form the cells. The manufacturing system needs to be flexible in order to handle large product mix changes. This paper discusses the impact of product mix variations on cellular manufacturing and presents a methodology to incorporate these variations into an existing cellular manufacturing setup.


1990 ◽  
Vol 28 (1) ◽  
pp. 145-152 ◽  
Author(s):  
G. SRINlVASAN ◽  
T. T. NARENDRAN ◽  
B. MAHADEVAN

Author(s):  
Esmond N. Urwin ◽  
Bob Young ◽  
Liam Frazer ◽  
David Hunt

Successfully fulfilling customers’ needs with world class products whilst remaining competitive and profitable are a major driver for the aerospace industry. The 21st Century is placing ever increasing pressure upon manufacturers to deliver high complexity, technologically enabled products to instantaneously fulfill a desired purpose at the point of use. To meet such stringent criteria, companies must find ways to continuously improve, reduce waste and accelerate the product development process whilst innovating. This paper presents a multiple case study approach of turbine blade manufacturing part families which has been used to further develop a manufacturing knowledge reuse method that is being developed in partnership with a high tech aerospace company for application within a PLM environment. This method is currently being explored within the company so as to accelerate the design-make process to enable earlier availability of, and easier access to, manufacturing knowledge, thus bringing about better product performance. The contents of the paper presents a methodical approach to the study of a number of products in an effort to ascertain how the complex interrelationships between design knowledge and manufacturing knowledge change across part families and, consequently, how they affect a developed feature knowledge relationship structure (FKRS) that maps design, manufacture and inspection viewpoints of product knowledge. Utilizing the FKRS, a pragmatic way has been developed in which people-to-people knowledge can be captured and shared to facilitate a reduction in the associated lead-time for information and knowledge retrieval and reuse. For this to be more widely applicable to different types of turbine blade it is necessary to widen the scope of the research. Four case studies are presented showing the aspects that constitute a part family and how knowledge varies across the products being studied. The FKRS is applied to the captured manufacturing knowledge in an effort to prove that it can represent and model multi-context knowledge across part families. The results have shown that the approach provides a basis for the representation of complex relationship viewpoints for product features and is valid for a number of manufacturing part families.


Sign in / Sign up

Export Citation Format

Share Document