The Adjoint Representation of a Lie Group

Author(s):  
Albert S. Schwarz
Author(s):  
I. Hernández ◽  
R. Peniche

We give the explicit multiplication law of the Lie supergroups for which the base manifold is a 3-dimensional Lie group and whose underlying Lie superalgebrag=g0⊕g1which satisfiesg1=g0,g0acts ong1via the adjoint representation andg0has a 2-dimensional derived ideal.


1984 ◽  
Vol 27 (1) ◽  
pp. 25-29 ◽  
Author(s):  
G. Walker ◽  
R. M. W. Wood

In [4] Elmer Rees proves that the symplectic group Sp(n) can be smoothly embedded in Euclidean space with codimension 3n, and the unitary group U(n) with codimension n. These are special cases of a result he obtains for a compact connected Lie group G. The general technique is first to embed G/T, where T is a maximal torus, as a maximal orbit of the adjoint representation of G, and then to extendto an embedding of G by using a maximal orbit of a faithful representation of G. In thisnote, we observe that in the cases G = Sp(n) or SU(n) an improved result is obtained byusing the “symplectic torus” S3 x … x S3 in place of T = S1 x … x S1. As in Rees's construction, the normal bundle of the embedding of G is trivial.


2017 ◽  
Vol 20 (3) ◽  
pp. 34-40
Author(s):  
K.A. Vyatkina

The paper is devoted to invariant theory problems, in particular to the problem of finding generators of invariant fields in an explicit form. The set of generators is given for invariant field of unitriangular group concerning the ad-joint representation of GL(n, K) group. Moreover, the set of generators of Borel group for the field of invariants is constructed and their algebraic independence is proved. Lie group;adjoint representation;field of invariant;generators of the field of invariants;Borel group;


2002 ◽  
Vol 133 (3) ◽  
pp. 399-409 ◽  
Author(s):  
NATÀLIA CASTELLANA ◽  
NITU KITCHLOO

Let G be a compact, simply-connected, simple Lie group and T ⊂ G a maximal torus. The purpose of this paper is to study the connection between various fibrations over BG (where G is a compact, simply-connected, simple Lie group) associated to the adjoint representation and homotopy colimits over poset categories [Cscr ], hocolim[Cscr ]BGI where GI are certain connected maximal rank subgroups of G.


Author(s):  
Jun Jiang ◽  
◽  
Satyendra Kumar Mishra ◽  
Yunhe Sheng ◽  
◽  
...  

In this paper, we introduce the notion of a (regular) Hom-Lie group. We associate a Hom-Lie algebra to a Hom-Lie group and show that every regular Hom-Lie algebra is integrable. Then, we define a Hom-exponential (Hexp) map from the Hom-Lie algebra of a Hom-Lie group to the Hom-Lie group and discuss the universality of this Hexp map. We also describe a Hom-Lie group action on a smooth manifold. Subsequently, we give the notion of an adjoint representation of a Hom-Lie group on its Hom-Lie algebra. At last, we integrate the Hom-Lie algebra (gl(V),[.,.],Ad), and the derivation Hom-Lie algebra of a Hom-Lie algebra.


1977 ◽  
Vol 29 (6) ◽  
pp. 1217-1222
Author(s):  
Ronald L. Lipsman

Let G be a connected semisimple Lie group with Lie algebra . Lebesgue measure on is invariant under the adjoint action of G; and so there is a natural unitary representation TG of G on L2 given by


2012 ◽  
Vol 9 (1) ◽  
pp. 59-64
Author(s):  
R.K. Gazizov ◽  
A.A. Kasatkin ◽  
S.Yu. Lukashchuk

In the paper some features of applying Lie group analysis methods to fractional differential equations are considered. The problem related to point change of variables in the fractional differentiation operator is discussed and some general form of transformation that conserves the form of Riemann-Liouville fractional operator is obtained. The prolongation formula for extending an infinitesimal operator of a group to fractional derivative with respect to arbitrary function is presented. Provided simple example illustrates the necessity of considering both local and non-local symmetries for fractional differential equations in particular cases including the initial conditions. The equivalence transformation forms for some fractional differential equations are discussed and results of group classification of the wave-diffusion equation are presented. Some examples of constructing particular exact solutions of fractional transport equation are given, based on the Lie group methods and the method of invariant subspaces.


Author(s):  
Ercüment H. Ortaçgil
Keyword(s):  

The discussions up to Chapter 4 have been concerned with the Lie group. In this chapter, the Lie algebra is constructed by defining the operators ∇ and ∇̃.


Sign in / Sign up

Export Citation Format

Share Document