Holonic Diagnosis for an Automotive Assembly Line

2003 ◽  
pp. 193-206 ◽  
Author(s):  
D. H. Jarvis ◽  
J. H. Jarvis
2014 ◽  
Vol 687-691 ◽  
pp. 4056-4059
Author(s):  
Cheng Li Pang

With the mass production and use of car, the social are also increasing the requirements the automotive industry development. More and more automobile manufacturers are hoping to establish an efficient identification system, so that management would be enhanced to improve the efficiency and reduce the error rate. What’s more, motor-dom has been the important application field of RFID technique. In this paper, the paper is to carry out a detailed analysis of technology and research for RFID anti-collision system to guide manufacturers to improve the efficiency of RFID systems in the automotive assembly line and to solve the problem of collision multi-tag identification.


2014 ◽  
Vol 2 (2) ◽  
pp. 22-39 ◽  
Author(s):  
Annamalai Pandian ◽  
Ahad Ali

This research paper aims to predict the automotive Body-In-White (BIW) robotic welding assembly line performance. A combinational prediction model based on the Autoregressive Moving Average (ARMA) and Artificial Neural Networks (ANN) is developed. Classical methods are often used to predict the assembly line throughput, but not ideal. A combinational prediction model is applied for comprehensive analysis and prediction of the assembly line throughput. The various case studies presented in this paper indicate that the precision of the model is better than the other models. This research has significant practical value to the assembly plant because, based on the prediction, plant can make commitment to achieve the production to meet the market demand. Unpredictable performance of the assembly line in the plant leads to more overtime, less time for maintenance and eventually hurting the company bottom line.


2020 ◽  
Vol 899 ◽  
pp. 268-274
Author(s):  
Mohamad Hafizdudin bin Tajul Arifin ◽  
Wan Emri Wan Abdul Rahman

The aim of this study is to analyze the existing production line in the automotive industry and proposed a layout of improved production line in the manufacturing process and obtain the optimum rate of production time. Thus, line balancing method and Yamazumi Chart was utilized to analyze the current and proposed production line. The collection of the data of the existing production line was conducted at one of the automotive company in Malaysia. From the analysis of current production line, two improved layout were proposed and evaluated. The proposed layout was selected based on a balanced production line and ability to meet customer demand. A balanced production line will ensure smooth process and eliminate wastage during operation


Sign in / Sign up

Export Citation Format

Share Document