Constraint-Based Neural Network Learning for Time Series Predictions

Author(s):  
Benjamin W. Wah ◽  
Minglun Qian
Author(s):  
A. Zorins

This paper presents an application of neural networks to financial time-series forecasting. No additional indicators, but only the information contained in the sales time series was used to model and forecast stock exchange index. The forecasting is carried out by two different neural network learning algorithms – error backpropagation and Kohonen self-organising maps. The results are presented and their comparative analysis is performed in this article.


2011 ◽  
Vol 131 (11) ◽  
pp. 1889-1894
Author(s):  
Yuta Tsuchida ◽  
Michifumi Yoshioka

Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 711
Author(s):  
Mina Basirat ◽  
Bernhard C. Geiger ◽  
Peter M. Roth

Information plane analysis, describing the mutual information between the input and a hidden layer and between a hidden layer and the target over time, has recently been proposed to analyze the training of neural networks. Since the activations of a hidden layer are typically continuous-valued, this mutual information cannot be computed analytically and must thus be estimated, resulting in apparently inconsistent or even contradicting results in the literature. The goal of this paper is to demonstrate how information plane analysis can still be a valuable tool for analyzing neural network training. To this end, we complement the prevailing binning estimator for mutual information with a geometric interpretation. With this geometric interpretation in mind, we evaluate the impact of regularization and interpret phenomena such as underfitting and overfitting. In addition, we investigate neural network learning in the presence of noisy data and noisy labels.


1994 ◽  
Vol 04 (01) ◽  
pp. 23-51 ◽  
Author(s):  
JEROEN DEHAENE ◽  
JOOS VANDEWALLE

A number of matrix flows, based on isospectral and isodirectional flows, is studied and modified for the purpose of local implementability on a network structure. The flows converge to matrices with a predefined spectrum and eigenvectors which are determined by an external signal. The flows can be useful for adaptive signal processing applications and are applied to neural network learning.


Sign in / Sign up

Export Citation Format

Share Document