Fluid inclusions with gas bubbles as geothermometers

2003 ◽  
pp. 123-133
Author(s):  
C. W. Correns
Keyword(s):  
2021 ◽  
Vol 33 (3) ◽  
pp. 305-314
Author(s):  
Anastassia Y. Borisova ◽  
Stefano Salvi ◽  
German Velasquez ◽  
Guillaume Estrade ◽  
Aurelia Colin ◽  
...  

Abstract. Recent advances in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) open new perspectives for quantification of trace metals and metalloids in mineral-hosted fluid inclusions and glass-hosted gas bubbles. This work is devoted to a new method applied to quantify element concentrations (at parts-per-million and weight percent levels) in natural and synthetic fluid inclusions and gas bubbles by using only an external calibrator in cases where internal standardization is unavailable. For example, this method can be applied to calculate element (metal and metalloid) concentrations in carbonic (C–O–H) fluid inclusions and bubbles. The method is devoted to measuring incompatible (with the host mineral and glass) trace elements originally dissolved into the trapped fluid. The method requires precise estimation of the fluid density, the inclusion/bubble volume or average radius, and measurement of the laser ablation crater radius by independent microanalytical techniques as well as accurate data on the concentration of major/minor elements compatible with the host mineral (or host glass). This method, applicable for analyses of hydrous carbonic fluid inclusions and gas bubbles hosted in silicate minerals and glasses, relies on the absence of a matrix effect between fluid, host mineral and daughter phases (silicate, oxide or sulfide) and the external calibrator (e.g., reference silicate glasses) during the LA-ICP-MS analysis, an assumption validated by the use of femtosecond lasers.


2002 ◽  
Vol 91 (0) ◽  
pp. s123-s133 ◽  
Author(s):  
C. W. Correns
Keyword(s):  

Author(s):  
O. M. Katz

The swelling of irradiated UO2 has been attributed to the migration and agglomeration of fission gas bubbles in a thermal gradient. High temperatures and thermal gradients obtained by electron beam heating simulate reactor behavior and lead to the postulation of swelling mechanisms. Although electron microscopy studies have been reported on UO2, two experimental procedures have limited application of the results: irradiation was achieved either with a stream of inert gas ions without fission or at depletions less than 2 x 1020 fissions/cm3 (∼3/4 at % burnup). This study was not limited either of these conditions and reports on the bubble characteristics observed by transmission and fractographic electron microscopy in high density (96% theoretical) UO2 irradiated between 3.5 and 31.3 x 1020 fissions/cm3 at temperatures below l600°F. Preliminary results from replicas of the as-polished and etched surfaces of these samples were published.


Author(s):  
George Guthrie ◽  
David Veblen

The nature of a geologic fluid can often be inferred from fluid-filled cavities (generally <100 μm in size) that are trapped during the growth of a mineral. A variety of techniques enables the fluids and daughter crystals (any solid precipitated from the trapped fluid) to be identified from cavities greater than a few micrometers. Many minerals, however, contain fluid inclusions smaller than a micrometer. Though inclusions this small are difficult or impossible to study by conventional techniques, they are ideally suited for study by analytical/ transmission electron microscopy (A/TEM) and electron diffraction. We have used this technique to study fluid inclusions and daughter crystals in diamond and feldspar.Inclusion-rich samples of diamond and feldspar were ion-thinned to electron transparency and examined with a Philips 420T electron microscope (120 keV) equipped with an EDAX beryllium-windowed energy dispersive spectrometer. Thin edges of the sample were perforated in areas that appeared in light microscopy to be populated densely with inclusions. In a few cases, the perforations were bound polygonal sides to which crystals (structurally and compositionally different from the host mineral) were attached (Figure 1).


Sign in / Sign up

Export Citation Format

Share Document