Characterization of submicrometer fluid Inclusions in minerals by Analytical/Transmission Electron Microscopy and electron diffraction

Author(s):  
George Guthrie ◽  
David Veblen

The nature of a geologic fluid can often be inferred from fluid-filled cavities (generally <100 μm in size) that are trapped during the growth of a mineral. A variety of techniques enables the fluids and daughter crystals (any solid precipitated from the trapped fluid) to be identified from cavities greater than a few micrometers. Many minerals, however, contain fluid inclusions smaller than a micrometer. Though inclusions this small are difficult or impossible to study by conventional techniques, they are ideally suited for study by analytical/ transmission electron microscopy (A/TEM) and electron diffraction. We have used this technique to study fluid inclusions and daughter crystals in diamond and feldspar.Inclusion-rich samples of diamond and feldspar were ion-thinned to electron transparency and examined with a Philips 420T electron microscope (120 keV) equipped with an EDAX beryllium-windowed energy dispersive spectrometer. Thin edges of the sample were perforated in areas that appeared in light microscopy to be populated densely with inclusions. In a few cases, the perforations were bound polygonal sides to which crystals (structurally and compositionally different from the host mineral) were attached (Figure 1).

2010 ◽  
Vol 434-435 ◽  
pp. 850-852
Author(s):  
Qi Wang ◽  
Bo Yin ◽  
Zhen Wang ◽  
Gen Li Shen ◽  
Yun Fa Chen

In present work, ceria microspheres were synthesized by template hydrothermal method. Crystalline form of the as-synthesized ceria microspheres was defined by X-ray powder diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Dispersibility of ceria microspheres was comprehensively characterized using scanning electron microscope (SEM) observation and laser particle size analyzer. Furthermore, the ultraviolet light absorption performances of ceria microspheres with several different sizes were compared by ultraviolet visible spectrophotometer. The results showed that ceria microspheres presented excellent UV absorbent property and the size influence was remarkable.


2017 ◽  
Vol 23 (4) ◽  
pp. 741-750 ◽  
Author(s):  
Sibylle Schilling ◽  
Arne Janssen ◽  
Nestor J. Zaluzec ◽  
M. Grace Burke

AbstractThe capability to perform liquid in situ transmission electron microscopy (TEM) experiments provides an unprecedented opportunity to examine the real-time processes of physical and chemical/electrochemical reactions during the interaction between metal surfaces and liquid environments. This work describes the requisite steps to make the technique fully analytical, from sample preparation, through modifications of the electrodes, characterization of electrolytes, and finally to electrochemical corrosion experiments comparing in situ TEM to conventional bulk cell and microcell configurations.


1985 ◽  
Vol 49 (352) ◽  
pp. 375-386 ◽  
Author(s):  
C. D. Curtis ◽  
C. R. Hughes ◽  
J. A. Whiteman ◽  
C. K. Whittle

AbstractA range of authigenic sedimentary chlorites from sandstones has been studied by analytical transmission electron microscopy. Selected area (single crystal) electron diffraction patterns are of the Ib (β = 90°) polytype confirming the earlier observations of Hayes (1970).TEM analyses show all samples to be relatively rich in both Al and Fe. In the general formula (Mg,Fe,Al)n [Si8−xAlxO20](OH)16, x varies between 1.5 and 2.6; Fe/(Fe + Mg) between 0.47 and 0.83 and n between 10.80 and 11.54. Octahedral Al is close to 3 in this formulation and Fe2+ predominates over Fe3+. Swelling chlorites have significantly different compositions which are consistent with smectite/chlorite interstratifications.The Ib (β = 90°) polytype appears to be stable under conditions of moderate to deep burial. It replaces berthierine and swelling chlorites formed at lower temperatures. As commonly seen in grain coatings, however, it precipitates from porewater; solutes probably being contributed from several mineral decomposition reactions.


1996 ◽  
Vol 442 ◽  
Author(s):  
Dov Cohen ◽  
C. Barry Carter

AbstractAntiphase boundaries in GaP crystals epitactically grown on Si (001) have been characterized using transmission electron microscopy. Convergent-beam electron diffraction was used to identify the antiphase-related grains. The antiphase boundaries were observed to adopt facets parallel to specific crystallographic orientations. Furthermore, stacking-fault-like contrast was observed along the interface suggesting that the domains may be offset from one another by a rigid-body lattice translation.


Author(s):  
S. G. Fleet ◽  
P. H. Ribbe

SummaryPlagioclase feldspars in the peristerite range An2-An17 have been investigated by transmission electron-microscopy and electron diffraction. All except the more anorthite-rich specimens were found to be unmixed into albite and oligoclase lamellae, between a few hundred and several thousand Å thick and approximately parallel to . A discussion is given of the part played by these lamellae when optical schiller is exhibited; and the effect of heat treatment on the lamellar structure and optical schiller is described.


2002 ◽  
Vol 8 (5) ◽  
pp. 403-411 ◽  
Author(s):  
María J. Sayagués ◽  
Teresa C. Rojas ◽  
Asunción Fernández ◽  
Rafal E. Dunin-Borkowski ◽  
Ron C. Doole ◽  
...  

Fe, Co, and Ni magnetic nanoparticles have been characterized using energy-selected imaging in a high-resolution transmission electron microscope. The samples comprised Fe/FeOx and Co/CoOx nanoparticles synthesized by inert gas evaporation and a Ni/C nano-composite prepared by a sonochemical method. All of the particles examined were found to be between 5 and 30 nm in size, with the Fe and Co crystals coated in 5–10 nm of metal oxide layer and the Ni metallic crystallites embedded in an amorphous carbon spherical matrix.


2019 ◽  
Vol 205 ◽  
pp. 08014
Author(s):  
Nora Bach ◽  
Armin Feist ◽  
Till Domrose ◽  
Thomas Danz ◽  
Marcel Möller ◽  
...  

We describe the implementation and detailed characterization of a laser-triggered field-emitter electron source integrated into a modified transmission electron microscope. Highly coherent electron pulses enable high resolution ultrafast electron imaging and diffraction.


Sign in / Sign up

Export Citation Format

Share Document