Every finite division ring is a field

1998 ◽  
pp. 23-26
Author(s):  
Martin Aigner ◽  
Günter M. Ziegler
Keyword(s):  
1954 ◽  
Vol 60 (3) ◽  
pp. 571 ◽  
Author(s):  
I. N. Herstein
Keyword(s):  

1979 ◽  
Vol 28 ◽  
pp. 53-62 ◽  
Author(s):  
Dragomir Z̆. Djoković ◽  
Jerry Malzan

1999 ◽  
Vol 51 (3) ◽  
pp. 488-505 ◽  
Author(s):  
W. D. Burgess ◽  
Manuel Saorín

AbstractThis article studies algebras R over a simple artinian ring A, presented by a quiver and relations and graded by a semigroup Σ. Suitable semigroups often arise from a presentation of R. Throughout, the algebras need not be finite dimensional. The graded K0, along with the Σ-graded Cartan endomorphisms and Cartan matrices, is examined. It is used to study homological properties.A test is found for finiteness of the global dimension of a monomial algebra in terms of the invertibility of the Hilbert Σ-series in the associated path incidence ring.The rationality of the Σ-Euler characteristic, the Hilbert Σ-series and the Poincaré-Betti Σ-series is studied when Σ is torsion-free commutative and A is a division ring. These results are then applied to the classical series. Finally, we find new finite dimensional algebras for which the strong no loops conjecture holds.


2015 ◽  
Vol 440 ◽  
pp. 128-144 ◽  
Author(s):  
Jairo Z. Gonçalves ◽  
Donald S. Passman

2016 ◽  
Vol 15 (08) ◽  
pp. 1650148 ◽  
Author(s):  
Simion Breaz ◽  
Peter Danchev ◽  
Yiqiang Zhou

Generalizing the notion of nil-cleanness from [A. J. Diesl, Nil clean rings, J. Algebra 383 (2013) 197–211], in parallel to [P. V. Danchev and W. Wm. McGovern, Commutative weakly nil clean unital rings, J. Algebra 425 (2015) 410–422], we define the concept of weak nil-cleanness for an arbitrary ring. Its comprehensive study in different ways is provided as well. A decomposition theorem of a weakly nil-clean ring is obtained. It is completely characterized when an abelian ring is weakly nil-clean. It is also completely determined when a matrix ring over a division ring is weakly nil-clean.


1957 ◽  
Vol 9 ◽  
pp. 336-346
Author(s):  
N. A. Wiegmann

1. Introduction. Burnside's Theorem in the theory of group representations states that a necessary and sufficient condition that a semigroup of matrices of degree n over the complex field be irreducible is that the semigroup contain n2 linearly independent matrices. In the course of dealing with sets of matrices with coefficients in a division ring, Brauer (1) obtained a generalization of this theorem which concerned irreducible semigroups with elements in a division ring.


1973 ◽  
Vol 25 (4) ◽  
pp. 881-887 ◽  
Author(s):  
E. D. Elgethun

In [8] I. N. Herstein conjectured that all the finite odd order sub-groups of the multiplicative group in a division ring are cyclic. This conjecture was proved false in general by S. A. Amitsur in [1]. In his paper Amitsur classifies all finite groups which can appear as a multiplicative subgroup of a division ring. Let D be a division ring with prime field k and let G be a finite group isomorphic to a multiplicative subgroup of D.


1989 ◽  
Vol 41 (1) ◽  
pp. 14-67 ◽  
Author(s):  
M. Chacron

Let D stand for a division ring (or skewfield), let G stand for an ordered abelian group with positive infinity adjoined, and let ω: D → G. We call to a valuation of D with value group G, if ω is an onto mapping from D to G such that(i) ω(x) = ∞ if and only if x = 0,(ii) ω(x1 + x2) = min(ω (x1), ω (x2)), and(iii) ω (x1 x2) = ω (x1) + ω (x2).Associated to the valuation ω are its valuation ringR = ﹛x ∈ Dω(x) ≧ 0﹜,its maximal idealJ = ﹛x ∈ |ω(x) > 0﹜, and its residue division ring D = R/J.The invertible elements of the ring R are called valuation units. Clearly R and, hence, J are preserved under conjugation so that 1 + J is also preserved under conjugation. The latter is thus a normal subgroup of the multiplicative group Dm of D and hence, the quotient group D˙/1 + J makes sense (the residue group of ω). It enlarges in a natural way the residue division ring D (0 excluded, and addition “forgotten“).


1971 ◽  
Vol 14 (4) ◽  
pp. 495-498 ◽  
Author(s):  
W. Burgess ◽  
M. Chacron

AbstractTwenty-five years ago McCoy published a characterization of commutative subdirectly irreducible rings. This result was generalized by Thierrin to duo rings with the word “field” which appeared in McCoy's theorem replaced by “division ring”. The purpose of this note is to give another generalization in which the words “division ring” will be replaced by “simple ring with 1 ”. The techniques resemble those of McCoy and Thierrin.


Sign in / Sign up

Export Citation Format

Share Document