Study on Spatio-Temporal Change of Land Use in Tianjin Urban Based on Remote Sensing Data

Author(s):  
Qiaozhen Guo ◽  
Lingchun Luo ◽  
Hongrui Zhao ◽  
Yingyang Pan ◽  
Qixuan Bing
2021 ◽  
Vol 13 (12) ◽  
pp. 2333
Author(s):  
Lilu Zhu ◽  
Xiaolu Su ◽  
Yanfeng Hu ◽  
Xianqing Tai ◽  
Kun Fu

It is extremely important to extract valuable information and achieve efficient integration of remote sensing data. The multi-source and heterogeneous nature of remote sensing data leads to the increasing complexity of these relationships, and means that the processing mode based on data ontology cannot meet requirements any more. On the other hand, the multi-dimensional features of remote sensing data bring more difficulties in data query and analysis, especially for datasets with a lot of noise. Therefore, data quality has become the bottleneck of data value discovery, and a single batch query is not enough to support the optimal combination of global data resources. In this paper, we propose a spatio-temporal local association query algorithm for remote sensing data (STLAQ). Firstly, we design a spatio-temporal data model and a bottom-up spatio-temporal correlation network. Then, we use the method of partition-based clustering and the method of spectral clustering to measure the correlation between spatio-temporal correlation networks. Finally, we construct a spatio-temporal index to provide joint query capabilities. We carry out local association query efficiency experiments to verify the feasibility of STLAQ on multi-scale datasets. The results show that the STLAQ weakens the barriers between remote sensing data, and improves their application value effectively.


2015 ◽  
Vol 19 (1) ◽  
pp. 507-532 ◽  
Author(s):  
P. Karimi ◽  
W. G. M. Bastiaanssen

Abstract. The scarcity of water encourages scientists to develop new analytical tools to enhance water resource management. Water accounting and distributed hydrological models are examples of such tools. Water accounting needs accurate input data for adequate descriptions of water distribution and water depletion in river basins. Ground-based observatories are decreasing, and not generally accessible. Remote sensing data is a suitable alternative to measure the required input variables. This paper reviews the reliability of remote sensing algorithms to accurately determine the spatial distribution of actual evapotranspiration, rainfall and land use. For our validation we used only those papers that covered study periods of seasonal to annual cycles because the accumulated water balance is the primary concern. Review papers covering shorter periods only (days, weeks) were not included in our review. Our review shows that by using remote sensing, the absolute values of evapotranspiration can be estimated with an overall accuracy of 95% (SD 5%) and rainfall with an overall absolute accuracy of 82% (SD 15%). Land use can be identified with an overall accuracy of 85% (SD 7%). Hence, more scientific work is needed to improve the spatial mapping of rainfall and land use using multiple space-borne sensors. While not always perfect at all spatial and temporal scales, seasonally accumulated actual evapotranspiration maps can be used with confidence in water accounting and hydrological modeling.


Author(s):  
Hua Ding ◽  
Ru Ren Li ◽  
Li Shuang Sun ◽  
Xin Wang ◽  
Yu Mei Liu

2021 ◽  
Vol 3 ◽  
pp. 180-185
Author(s):  
Y. M. Kenzhegaliyev ◽  
◽  
◽  

The goal -is to explore ways of using Earth remote sensing data for efficient land use. Methods - detailed information on current location of certain types of agricultural crops in the study areas has been summarized, which opens up opportunities for the effective use of cultivated areas. It was revealed that the basis of the principle of the method under consideration is the relationship between the state and structure of vegetation types with its reflective ability. It has been determined that information on the spectral reflective property of the vegetation cover in the future can help replace more laborious methods of laboratory analysis. For classification of farmland, satellite images of medium spatial resolution with a combination of channels in natural colors were selected. Results - a method for identifying agricultural plants by classification according to the maximum likelihood algorithm was considered. The commonly used complexes of geoinformation software products with modules for special image processing allow displaying indicators in the form of raster images. It is shown that the use of Earth remote sensing data is the most relevant solution in the field of crop recognition and makes it possible to simplify the implementation of such types of work as the analysis of the intensity of land use, the assessment of the degree of pollution with weeds and determination of crop productivity. Conclusions - the research results given in the article indicate that timely information on the current location of certain types of agricultural crops in the studied territories significantly simplifies the implementation of the tasks and increases the resource potential of agricultural lands. In turn, the timing of the survey and the state of environment affect the spectral reflectivity of vegetation.


Sign in / Sign up

Export Citation Format

Share Document