The Cauchy Problem, Boundary Value and Mixed Problems for Hyperbolic systems in the Complete Scale of Sobolev Type Spaces

Author(s):  
Ja. A. Roitberg
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Ming Ren ◽  
Shiwei Yun ◽  
Zhenping Li

AbstractIn this paper, we apply a reliable combination of maximum modulus method with respect to the Schrödinger operator and Phragmén–Lindelöf method to investigate nonlinear conservation laws for the Schrödinger boundary value problems of second order. As an application, we prove the global existence to the solution for the Cauchy problem of the semilinear Schrödinger equation. The results reveal that this method is effective and simple.


2005 ◽  
Vol 2005 (2) ◽  
pp. 93-115
Author(s):  
C. P. Oliveira

This paper studies, in a partial but concise manner, approximate solutions of equations defined by complex spherical multiplier operators. The approximations are from native spaces embedded in Sobolev-type spaces and derived from the use of positive definite functions to perform spherical interpolation.


Author(s):  
Lee Da-tsin(Li Ta-tsien) ◽  
Shi Jia-hong

SynopsisIn this paper, the existence of global smooth solutions and the formation of singularities of solutions for strictly hyperbolic systems with general eigenvalues are discussed for the Cauchy problem with essentially periodic small initial data or nonperiodic initial data. A result of Klainerman and Majda is thus extended to the general case.


2020 ◽  
Vol 53 (2) ◽  
pp. 159-180
Author(s):  
V. M. Kyrylych ◽  
O. Z. Slyusarchuk

Nonlocal boundary value problems for arbitrary order hyperbolic systems with one spatial variable are considered. A priori estimates for general nonlocal mixed problems for systems with smooth and piecewise smooth coefficients are obtained. The correct solvability of such problems is proved.Examples of additional conditions necessity are provided.


Sign in / Sign up

Export Citation Format

Share Document