Environmental Influences on the Immune System: The Aging Immune System

Author(s):  
Julia N. Mälzer ◽  
Axel R. Schulz ◽  
Andreas Thiel
Author(s):  
Azahara María García-Serna ◽  
Elena Martín-Orozco ◽  
Trinidad Hernández-Caselles ◽  
Eva Morales

It is suggested that programming of the immune system starts before birth and is shaped by environmental influences acting during critical windows of susceptibility for human development. Prenatal and perinatal exposure to physiological, biological, physical, or chemical factors can trigger permanent, irreversible changes to the developing immune system, which may be reflected in cord blood of neonates. The aim of this narrative review is to summarize the evidence on the role of the prenatal and perinatal environment, including season of birth, mode of delivery, exposure to common allergens, a farming environment, pet ownership, and exposure to tobacco smoking and pollutants, in shaping the immune cell populations and cytokines at birth in humans. We also discuss how reported disruptions in the immune system at birth might contribute to the development of asthma and related allergic manifestations later in life.


2021 ◽  
Vol 11 ◽  
Author(s):  
Megan Chambers ◽  
April Rees ◽  
James G. Cronin ◽  
Manju Nair ◽  
Nicholas Jones ◽  
...  

Macrophages are key components of the innate immune system and exhibit extensive plasticity and heterogeneity. They play a significant role in the non-pregnant cycling uterus and throughout gestation they contribute to various processes underpinning reproductive success including implantation, placentation and parturition. Macrophages are also present in breast milk and impart immunomodulatory benefits to the infant. For a healthy pregnancy, the maternal immune system must adapt to prevent fetal rejection and support development of the semi-allogenic fetus without compromising host defense. These functions are dependent on macrophage polarization which is governed by the local tissue microenvironmental milieu. Disruption of this microenvironment, possibly by environmental factors of infectious and non-infectious origin, can affect macrophage phenotype and function and is linked to adverse obstetric outcomes, e.g. spontaneous miscarriage and preterm birth. Determining environmental influences on cellular and molecular mechanisms that control macrophage polarization at the maternal-fetal interface and the role of this in pregnancy complications could support approaches to alleviating adverse pregnancy outcomes.


2014 ◽  
Vol 222 (3) ◽  
pp. 148-153 ◽  
Author(s):  
Sabine Vits ◽  
Manfred Schedlowski

Associative learning processes are one of the major neuropsychological mechanisms steering the placebo response in different physiological systems and end organ functions. Learned placebo effects on immune functions are based on the bidirectional communication between the central nervous system (CNS) and the peripheral immune system. Based on this “hardware,” experimental evidence in animals and humans showed that humoral and cellular immune functions can be affected by behavioral conditioning processes. We will first highlight and summarize data documenting the variety of experimental approaches conditioning protocols employed, affecting different immunological functions by associative learning. Taking a well-established paradigm employing a conditioned taste aversion model in rats with the immunosuppressive drug cyclosporine A (CsA) as an unconditioned stimulus (US) as an example, we will then summarize the efferent and afferent communication pathways as well as central processes activated during a learned immunosuppression. In addition, the potential clinical relevance of learned placebo effects on the outcome of immune-related diseases has been demonstrated in a number of different clinical conditions in rodents. More importantly, the learned immunosuppression is not restricted to experimental animals but can be also induced in humans. These data so far show that (i) behavioral conditioned immunosuppression is not limited to a single event but can be reproduced over time, (ii) immunosuppression cannot be induced by mere expectation, (iii) psychological and biological variables can be identified as predictors for this learned immunosuppression. Together with experimental approaches employing a placebo-controlled dose reduction these data provide a basis for new therapeutic approaches to the treatment of diseases where a suppression of immune functions is required via modulation of nervous system-immune system communication by learned placebo effects.


2015 ◽  
Vol 223 (3) ◽  
pp. 151-156 ◽  
Author(s):  
Nina Schweinfurth ◽  
Undine E. Lang

Abstract. In the development of new psychiatric drugs and the exploration of their efficacy, behavioral testing in mice has always shown to be an inevitable procedure. By studying the behavior of mice, diverse pathophysiological processes leading to depression, anxiety, and sickness behavior have been revealed. Moreover, laboratory research in animals increased at least the knowledge about the involvement of a multitude of genes in anxiety and depression. However, multiple new possibilities to study human behavior have been developed recently and improved and enable a direct acquisition of human epigenetic, imaging, and neurotransmission data on psychiatric pathologies. In human beings, the high influence of environmental and resilience factors gained scientific importance during the last years as the search for key genes in the development of affective and anxiety disorders has not been successful. However, environmental influences in human beings themselves might be better understood and controllable than in mice, where environmental influences might be as complex and subtle. The increasing possibilities in clinical research and the knowledge about the complexity of environmental influences and interferences in animal trials, which had been underestimated yet, question more and more to what extent findings from laboratory animal research translate to human conditions. However, new developments in behavioral testing of mice involve the animals’ welfare and show that housing conditions of laboratory mice can be markedly improved without affecting the standardization of results.


Sign in / Sign up

Export Citation Format

Share Document