Fatty acid patterns of Ranunculaceae seed oils: phylogenetic relationships

Author(s):  
Kurt Aitzetmüller
2012 ◽  
Vol 7 (7) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Ayşegül Güvenç ◽  
Nurgün Küçükboyacι ◽  
Ahmet Ceyhan Gören

Fatty acid compositions of seeds of five taxa of the Juniperus section of the genus Juniperus L. (Cupressaceae), i. e. J. drupacea Lab., J. communis L. var. communis, J. communis var. saxatilis Pall., J. oxycedrus L. subsp. oxycedrus, and J. oxycedrus subsp. macrocarpa (Sibth. & Sm.) Ball, were investigated. Methyl ester derivatized fatty acids of the lipophylic extracts of the five species were comparatively analyzed by capillary gas chromatography-mass spectrometry (GC-MS). Juniperus taxa showed uniform fatty acid patterns, among which linoleic (25.8–32.5%), pinolenic (11.9–24.1%) and oleic acids (12.4–17.2%) were determined to be the main fractions in the seed oils. Juniperonic acid was found to be remarkably high in J. communis var. saxatilis (11.4 %), J. oxycedrus subsp. oxycedrus (10.4 %), and J. communis var. communis (10.1 %). To the best of our knowledge, the present work discloses the first report on the fatty acid compositions of seeds of this Juniperus section grown in Turkey.


1962 ◽  
Vol 40 (11) ◽  
pp. 2078-2082 ◽  
Author(s):  
C. Y. Hopkins ◽  
Mary J. Chisholm

Seed oils were hydrolyzed under mild conditions and the major conjugated fatty acid of each oil was isolated and identified. In two families, species which were closely related botanically contained different but isomeric acids. Thus, in the Bignoniaceae, Jacaranda chelonia had cis trans,cis-8,10,12-octadecatrienoic acid as a major acid while Catalpa speciosa had trans,trans,cis-9,11,13-octadecatrienoic acid. In the Cucurbitaceae, Momordica charantia had the ordinary cis,trans,trans-9,11,13-octadecatrienoic (α-eleostearic) acid while M. balsamina had cis,trans,cis-9,11,13-octadecatrienoic (punicic) acid. M. balsamina is a new and convenient source of punicic acid. α-Eleostearic acid was identified as a major acid in examples of Valerianaceae and Rosaceae. Further proof was obtained that the fatty acid of Calendula officinalis (Compositae) is trans,trans,cis-8,10,12-octadecatrienoic acid.


1994 ◽  
Vol 40 (10) ◽  
pp. 844-850 ◽  
Author(s):  
Peter Kämpfer ◽  
Klaus Blasczyk ◽  
Georg Auling

A chemotaxonomic study was carried out on representative strains of 13 Aeromonas genomic species. Quinone, polyamine, and fatty acid patterns were found to be very useful for an improved characterization of the genus and an improved differentiation from members of the families Enterobacteriaceae and Vibrionaceae. The Q-8-benzoquinone was the predominant ubiquinone, and putrescine and diaminopropane were the major poly amines of the genus. The fatty acid patterns of 181 strains, all characterized by DNA–DNA hybridization, showed a great homogeneity within the genus, with major amounts of hexadecanoic acid (16:0), hexadecenoic acid (16:1), and octadecenoic acid (18:1), and minor amounts of the hydroxylated fatty acids (3-OH 13:0, 2-OH 14:0, 3-OH 14:0) in addition to some iso and anteiso branched fatty acids (i-13:0, i-17:1, i-17:0, and a-17:0). Although some differences in fatty acid profiles between the genomic species could be observed, a clearcut differentiation of all species was not possible.Key words: Aeromonas, polyamines, quinones, fatty acids, differentiation.


2017 ◽  
Vol 94 (7) ◽  
pp. 905-912 ◽  
Author(s):  
Yanling Wang ◽  
Yuge Niu ◽  
Xin Zhao ◽  
Bangquan Wang ◽  
Qianqian Jiang ◽  
...  
Keyword(s):  

Lipids ◽  
1982 ◽  
Vol 17 (9) ◽  
pp. 639-643 ◽  
Author(s):  
Adria Rothman Sherman ◽  
Sandra J. Bartholmey ◽  
Edward G. Perkins

Sign in / Sign up

Export Citation Format

Share Document