calendula officinalis
Recently Published Documents


TOTAL DOCUMENTS

759
(FIVE YEARS 226)

H-INDEX

28
(FIVE YEARS 5)

2022 ◽  
pp. 1-6
Author(s):  
Reham M. Samra ◽  
Galal T. Maatooq ◽  
Ahmed A. Zaki

2022 ◽  
Vol 14 (2) ◽  
pp. 619
Author(s):  
Zhouli Liu ◽  
Mengdi Chen ◽  
Maosen Lin ◽  
Qinglin Chen ◽  
Qingxuan Lu ◽  
...  

The application of flowering plants is the basis of urban forest construction. A newly-found flowering hyperaccumulator is crucial for remediating urban contaminated soil sustainably by cadmium (Cd). This study evaluated growth responses, Cd uptake and bioaccumulation characteristics of seven urban flowering plants. Based on growth responses of these plants, Calendula officinalis L. showed high tolerance to at least 100 mg kg−1 Cd, in terms of significant increase in biomass and with no obvious changes in height. After 60 d exposure to 100 mg kg−1 Cd, the accumulated Cd in shoots of the plant reached 279.51 ± 13.67 μg g−1 DW, which is above the critical value defined for a hyperaccumulator (100 μg g−1 DW for Cd). Meanwhile, the plant could accumulate Cd to as much as 926.68 ± 29.11 μg g−1 DW in root and 1206.19 ± 23.06 μg g−1 DW in plant, and had higher Cd uptake and bioaccumulation values. According to these traits, it is shown that Calendula officinalis L. can become a potential Cd-hyperaccumulator for phytoremediation. By contrast, Dianthus caryophyllus L. is very sensitive to Cd stress in terms of significantly decreased biomass, height and Cd uptake, indicating the plant is considered as a Cd-bioindicator.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 96
Author(s):  
Raquel Mur ◽  
Elisa Langa ◽  
M. Rosa Pino-Otín ◽  
José S. Urieta ◽  
Ana M. Mainar

The growing interest in the cosmetic industry in using compounds of natural and sustainable origin that are safe for humans is encouraging the development of processes that can satisfy these needs. Chlorogenic acid (CHA), caffeic acid (CAF) and ferulic acid (FA) are three compounds widely used within the cosmetic industry due to their functionalities as antioxidants, collagen modifiers or even as radiation protectors. In this work, two advanced separation techniques with supercritical CO2 are used to obtain these three compounds from Calendula officinalis, and these are then evaluated using a computational skin permeability model. This model is encompassed by the COSMO-RS model, the calculations of which make it possible to study the behaviour of the compounds in the epidermis. The results show that both CAF and FA are retained in the stratum corneum, while CHA manages to penetrate to the stratum spinosum. These compounds were concentrated by antisolvent fractionation with super-critical CO2 using a Response Surface Methodology to study the effect of pressure and CO2 flow rate. CHA, CAF and FA were completely retained in the precipitation vessel, with concentrations between 40% and 70% greater than in the original extract. The conditions predicted that the optimal overall yield and enrichment achieved would be 153 bar and 42 g/min.


2021 ◽  
Vol 11 (40) ◽  
pp. 164-165
Author(s):  
Katarina Hostanska ◽  
Matthias Rostock ◽  
Stephan Baumgartner ◽  
Reinhard Saller

Background: Since ancient times, preparations from traditional medicinal plants e.g. Arnica montana, Calendula officinalis or Hypericum perforatum have been used for different wound healing purposes. The aim of this study was to investigate the efficacy of the commercial low dilution homeopathic remedy Similasan® Arnica plus Spray, a preparation of Arnica montana 4x, Calendula officinalis 4x, Hypericum perforatum 4x and Symphytum officinale 6x (0712-2) and medium diluted SIM WuS (Petroleum 15x, Arnica montana 15x, Calcium fluoratum 12x, Calendula officinalis 12x, Hepar sulfuris 12x and Mercurius solubilis 15x; 1101-4), on the wound healing in cultured NIH 3T3 fibroblasts. Both remedies were from Similasan AG (Jonen, Switzerland) and prepared according the German Homoeopathic Pharmacopoeia (GHP) following descriptions 4a for arnica, 3a for marigold and St. John’s wort, 2a for comfrey, 5a for petroleum, and 6 for calcium fluoride, hepar sulfuris and mercurius solubilis. Materials and Methods: Cell proliferation, migration and wound closure promoting effect of the preparations (0712-2, 1101- 4) and their succussed solvents (0712-1, 1101-3) were investigated on mouse NIH 3T3 fibroblasts. Cell viability was determined by WST-1 assay, cell growth using BrdU uptake, cell migration by chemotaxis assay and wound closure by CytoSelect ™Wound Healing Assay Kit which generated a defined wound area. All assays were performed in three independent controlled experiments. In some experiments diluted unsuccussed alcohol (0712-3) was also investigated. Results: Preparations (0712-1), (0712-2), (0712-3), (1101-3) and (1101-4) were investigated at decimal dilution steps from 1x to 4x. Cell viabilty was not affected by any of the substances and (0712-1) and (0712-2) showed no stimulating effect on cell proliferation. Preparation (0712-2) exerted a stimulating effect on fibroblast migration (31.7%) vs 15% with succussed solvent (0712-1) at 1:100 dilutions (p0.05). Positive control 2 ng/ml EGF increased migratory activity of cells by 49.8%. Preparation (0712-2) at a dilution of 1:100 promoted in vitro wound closure by 59.5% and differed significantly (p


HERBALISM ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 43-51
Author(s):  
Barbara Krochmal-Marczak ◽  
Anna Kiełtyka-Dadasiewicz

W przeprowadzonych badaniach wykazano wpływ temperatury wody i czasu parzenia na zawartość polifenoli oraz aktywność antyoksydacyjną naparów z kwiatów języczkowych nagietka lekarskiego (Calendula officinalis L.). Wszystkie badane próbki charakteryzowały się niskimi właściwościami antyoksydacyjnymi. Czas parzenia oraz temperatura wody wpły-wały na zawartość polifenoli i właściwości antyoksydacyjne naparów. Aby uzyskać napar z suszonych kwiatów języczkowych z nagietka o najwyższej zawartości polifenoli, należy parzyć je przez 10 minut, przy użyciu wody o temperaturze 80°C. Najwyższą zdolność do zmiatania rodnika DPPH uzyskał napar sporządzony w najwyższej temperaturze 100°C, po 10 minutach parzenia. Otrzymane wyniki wskazują na potencjalną możliwość wykorzystania tego surowca do produkcji naparów herbacianych.


Sign in / Sign up

Export Citation Format

Share Document