Proposal for the Algorithmic Use of the BKK-Number in the Algebraic Reduction of a O-dimensional Polynomial System

Author(s):  
Hans J. Stetter
1989 ◽  
Author(s):  
N. NAGARAJ ◽  
GRANT PALMER

Author(s):  
J Ph Guillet ◽  
E Pilon ◽  
Y Shimizu ◽  
M S Zidi

Abstract This article is the first of a series of three presenting an alternative method of computing the one-loop scalar integrals. This novel method enjoys a couple of interesting features as compared with the method closely following ’t Hooft and Veltman adopted previously. It directly proceeds in terms of the quantities driving algebraic reduction methods. It applies to the three-point functions and, in a similar way, to the four-point functions. It also extends to complex masses without much complication. Lastly, it extends to kinematics more general than that of the physical, e.g., collider processes relevant at one loop. This last feature may be useful when considering the application of this method beyond one loop using generalized one-loop integrals as building blocks.


Author(s):  
Bo Xiao ◽  
Hak-Keung Lam ◽  
Zhixiong Zhong

AbstractThe main challenge of the stability analysis for general polynomial control systems is that non-convex terms exist in the stability conditions, which hinders solving the stability conditions numerically. Most approaches in the literature impose constraints on the Lyapunov function candidates or the non-convex related terms to circumvent this problem. Motivated by this difficulty, in this paper, we confront the non-convex problem directly and present an iterative stability analysis to address the long-standing problem in general polynomial control systems. Different from the existing methods, no constraints are imposed on the polynomial Lyapunov function candidates. Therefore, the limitations on the Lyapunov function candidate and non-convex terms are eliminated from the proposed analysis, which makes the proposed method more general than the state-of-the-art. In the proposed approach, the stability for the general polynomial model is analyzed and the original non-convex stability conditions are developed. To solve the non-convex stability conditions through the sum-of-squares programming, the iterative stability analysis is presented. The feasible solutions are verified by the original non-convex stability conditions to guarantee the asymptotic stability of the general polynomial system. The detailed simulation example is provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed approach is more capable to find feasible solutions for the general polynomial control systems when compared with the existing ones.


Author(s):  
NGUYEN CONG MINH ◽  
LUU BA THANG ◽  
TRAN NAM TRUNG

Abstract Let I be a zero-dimensional ideal in the polynomial ring $K[x_1,\ldots ,x_n]$ over a field K. We give a bound for the number of roots of I in $K^n$ counted with combinatorial multiplicity. As a consequence, we give a proof of Alon’s combinatorial Nullstellensatz.


2008 ◽  
Vol 44 (2) ◽  
pp. 286-290
Author(s):  
P. D. Khodi-zade

2013 ◽  
Vol 46 (3/4) ◽  
pp. 120-121
Author(s):  
Hiroshi Sekigawa ◽  
Kiyoshi Shirayanagi

Sign in / Sign up

Export Citation Format

Share Document