Toward a Perception-Based Theory of Probabilistic Reasoning with Imprecise Probabilities

Author(s):  
Lotfi A. Zadeh
Author(s):  
PAUL A. BOXER

Autonomous robots are unsuccessful at operating in complex, unconstrained environments. They lack the ability to learn about the physical behavior of different objects through the use of vision. We combine Bayesian networks and qualitative spatial representation to learn general physical behavior by visual observation. We input training scenarios that allow the system to observe and learn normal physical behavior. The position and velocity of the visible objects are represented as qualitative states. Transitions between these states over time are entered as evidence into a Bayesian network. The network provides probabilities of future transitions to produce predictions of future physical behavior. We use test scenarios to determine how well the approach discriminates between normal and abnormal physical behavior and actively predicts future behavior. We examine the ability of the system to learn three naive physical concepts, "no action at a distance", "solidity" and "movement on continuous paths". We conclude that the combination of qualitative spatial representations and Bayesian network techniques is capable of learning these three rules of naive physics.


Author(s):  
Paul Christoph Gembarski ◽  
Stefan Plappert ◽  
Roland Lachmayer

AbstractMaking design decisions is characterized by a high degree of uncertainty, especially in the early phase of the product development process, when little information is known, while the decisions made have an impact on the entire product life cycle. Therefore, the goal of complexity management is to reduce uncertainty in order to minimize or avoid the need for design changes in a late phase of product development or in the use phase. With our approach we model the uncertainties with probabilistic reasoning in a Bayesian decision network explicitly, as the uncertainties are directly attached to parts of the design artifact′s model. By modeling the incomplete information expressed by unobserved variables in the Bayesian network in terms of probabilities, as well as the variation of product properties or parameters, a conclusion about the robustness of the product can be made. The application example of a rotary valve from engineering design shows that the decision network can support the engineer in decision-making under uncertainty. Furthermore, a contribution to knowledge formalization in the development project is made.


2009 ◽  
Vol 9 (4) ◽  
pp. 1349-1363 ◽  
Author(s):  
D. Nijssen ◽  
A. Schumann ◽  
M. Pahlow ◽  
B. Klein

Abstract. As a result of the severe floods in Europe at the turn of the millennium, the ongoing shift from safety oriented flood control towards flood risk management was accelerated. With regard to technical flood control measures it became evident that the effectiveness of flood control measures depends on many different factors, which cannot be considered with single events used as design floods for planning. The multivariate characteristics of the hydrological loads have to be considered to evaluate complex flood control measures. The effectiveness of spatially distributed flood control systems differs for varying flood events. Event-based characteristics such as the spatial distribution of precipitation, the shape and volume of the resulting flood waves or the interactions of flood waves with the technical elements, e.g. reservoirs and flood polders, result in varying efficiency of these systems. Considering these aspects a flood control system should be evaluated with a broad range of hydrological loads to get a realistic assessment of its performance under different conditions. The consideration of this variety in flood control planning design was one particular aim of this study. Hydrological loads were described by multiple criteria. A statistical characterization of these criteria is difficult, since the data base is often not sufficient to analyze the variety of possible events. Hydrological simulations were used to solve this problem. Here a deterministic-stochastic flood generator was developed and applied to produce a large quantity of flood events which can be used as scenarios of possible hydrological loads. However, these simulations imply many uncertainties. The results will be biased by the basic assumptions of the modeling tools. In flood control planning probabilities are applied to characterize uncertainties. The probabilities of the simulated flood scenarios differ from probabilities which would be derived from long time series. With regard to these known unknowns the bias of the simulations was considered by imprecise probabilities. Probabilities, derived from measured flood data were combined with probabilities which were estimated from long simulated series. To consider imprecise probabilities, fuzzy sets were used to distinguish the results between more or less possible design floods. The need for such a differentiated view on the performance of flood protection systems is demonstrated by a case study.


Sign in / Sign up

Export Citation Format

Share Document