Modeling of Head-Disk Interface for Magnetic Recording

Author(s):  
Kanzo Okada
2014 ◽  
Vol 50 (3) ◽  
pp. 137-143 ◽  
Author(s):  
Bruno Marchon ◽  
Xing-Cai Guo ◽  
Bala Krishna Pathem ◽  
Franck Rose ◽  
Qing Dai ◽  
...  

Author(s):  
Haoyu Wu ◽  
David Bogy

The near field transducer (NFT) overheating problem is an issue the hard disk drive (HDD) industry has faced since heat-assisted magnetic recording (HAMR) technology was first introduced. In this paper, a numerical study of the head disk interface (HDI) is performed to predict the significance of the nanoscale heat transfer due to the back heating from the disk. A steady-state heat transfer problem is first solved to get the disk temperature profile. Then an iterative simulation of the entire HDI system is performed. It shows that the heat transfer coefficient in the HDI increases to about 6:49 × 106 W/(m2K) when the clearance is 0:83 nm. It also shows that in the free space laser scenario, the simulation result is close to the experimental result.


Author(s):  
Haoyu Wu ◽  
David Bogy

Understanding the heat transfer in the head disk interface (HDI) in the heat assisted magnetic recording (HAMR) is important. In this paper, we report on a series of experiments to study the heat transfer in the HDI using the perpendicular magnetic recording (PMR) heads and media. The temperature increase of the embedded contact sensor (ECS) and the thermal fly-height control (TFC) heater was compared in the fly setup and non-fly setup. A series of simulations were performed to explain the results. We show that the design of the air bearing surface can significantly affect the pressure distribution in the read/write transducer area, and thereby affect the convective heat transfer coefficient.


Sign in / Sign up

Export Citation Format

Share Document