A-16 Study of Head-Disk Interface for Laser-Assisted Magnetic Recording : Experimental identification of local temperature increase on disk surface due to laser heating

Author(s):  
Kenji UEDA ◽  
Norio TAGAWA ◽  
Hiroshi TANI
Author(s):  
Norio Tagawa ◽  
Hiroshi Tani ◽  
Shinji Koganezawa ◽  
Renguo Lu

To achieve magnetic recording densities greater than 10 Tb/in2, the head-disk interface (HDI) spacing is required to be less than 2–3 nm. Thus far, various technologies, such as heat assisted magnetic recording (HAMR), have been studied and developed to achieve such high magnetic recording densities [1]. To ensure the practical applicability of HAMR, it is important to understand the reliability of perfluoropolyether (PFPE) boundary lubricant films and carbon overcoat or diamond-like carbon (DLC) thin films used on the head slider and disk surfaces under heating conditions [2].


Author(s):  
Shaomin Xiong ◽  
David Bogy

The areal data density of magnetic recording hard disk drives (HDDs) increases year by year, following a trend similar to Moore’s law. However, the increase is not unbounded and there are some physical limits. As the density increases, the size of each magnetic grain shrinks. Finally the magnetic grain will be no longer thermally stable due to what is termed superparamagnetism. Above this point, the magnetic storage would be not reliable because the magnetic grains’ orientations fluctuate randomly. To increase magnetic recording density to more than 1 Tb/in2 and break this limit, heat assisted magnetic recording (HAMR) is proposed. In HAMR systems, a more thermally stable magnetic material, one with higher coercivity, will be used as a recording layer. But the coercivity of this material at room temperature is so high that it is difficult for the writer to switch the magnetic orientation with current magnetic transducers. However, the coercivity drops sharply if the temperature is raised close to the Curie temperature. In HAMR systems, a laser is proposed as the means to heat the disk to the Curie point. Simultaneously the magnetic field is applied from the writer to switch the magnetic bits. The success of the magnetic switching is very sensitive to the media temperature [2]. If the temperature is too low compared with the Curie point, it will not be able to write any information into the media. Conversely, heating the media over the Curie point requires more energy and may bring a greater challenge for the head disk interface (HDI). It is very important to understand the local temperature distribution during the laser heating and to calibrate the laser power input for HAMR writing. Some work has been done to evaluate the temperature increase using both numerical and experimental methods [3, 4]. Tagawa et.al. observed the disk refractive index change during laser heating and compared it with the change under conventional oven heating. This is a good method to calibrate the laser power and get the average temperature but it has some limitations for getting the accurate temperature distributions because of the averaging effect for the refractive index measurement by ellipsometry.


1995 ◽  
Vol 117 (1) ◽  
pp. 86-93 ◽  
Author(s):  
S. K. Ganapathi ◽  
Timothy A. Riener

The effects on tribological performance of air bearing surface overcoats on magnetic recording sliders are presented. Both component level and disk drive level testing indicate that significant performance enhancements are afforded by the overcoat, and that both stiction/friction and wear of the head/disk interface are reduced, thus increasing interface durability. The degradation in electrical performance of the heads due to the presence of the overcoat is shown to be consistent with that predicted by the Wallace equation. In addition, it is shown that the performance enhancements of the overcoat are achieved only in the presence of lubricant on the disk surface, suggesting that the overcoat lubricant interaction may be more benign than the interaction of the lubricant with the slider material.


2014 ◽  
Vol 50 (3) ◽  
pp. 137-143 ◽  
Author(s):  
Bruno Marchon ◽  
Xing-Cai Guo ◽  
Bala Krishna Pathem ◽  
Franck Rose ◽  
Qing Dai ◽  
...  

Author(s):  
Kyaw Sett Myo ◽  
Weidong Zhou ◽  
Xiaoyang Huang ◽  
Shengkai Yu

Heat-assisted magnetic recording (HAMR) is one of prospective high density recording technologies in current hard disk industry. It requires heating a spot on the recording media with the laser beam to overcome the superpara-magnetic limit. The heat produced by laser beam causes the temperature field on the hard disk surface to be highly non-uniform, which may lead to unexpectedly severe lubricant loss, or even the failure of the whole HAMR system. In the meantime, the heat loss caused by the optical delivery system may cause unwanted thermal protrusion on the slider body, which may affect slider’s flying stability in the end.


Sign in / Sign up

Export Citation Format

Share Document