Ferrofluid Lubrication of Squeeze Film in Curved Circular Plates with Assorted Porous Structures

Author(s):  
N. D. Patel ◽  
G. M. Deheri ◽  
S. S. Mehta
1999 ◽  
Vol 66 (4) ◽  
pp. 1021-1023 ◽  
Author(s):  
R. Usha ◽  
P. Vimala

In this paper, the magnetic effects on the Newtonian squeeze film between two circular parallel plates, containing a single central air bubble of cylindrical shape are theoretically investigated. A uniform magnetic field is applied perpendicular to the circular plates, which are in sinusoidal relative motion, and fluid film inertia effects are included in the analysis. Assuming an ideal gas under isothermal condition for an air bubble, a nonlinear differential equation for the bubble radius is obtained by approximating the momentum equation governing the magnetohydrodynamic squeeze film by the mean value averaged across the film thickness. Approximate analytical solutions for the air bubble radius, pressure distribution, and squeeze film force are determined by a perturbation method for small amplitude of sinusoidal motion and are compared with the numerical solution obtained by solving the nonlinear differential equation. The combined effects of air bubble, fluid film inertia, and magnetic field on the squeeze film force are analyzed.


2009 ◽  
Vol 61 (3) ◽  
pp. 140-145 ◽  
Author(s):  
Himanshu Patel ◽  
Gunamani M. Deheri ◽  
Rakesh M. Patel

2012 ◽  
Vol 25 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Jaw-Ren Lin ◽  
Li-Ming Chu ◽  
Long-Jin Liang

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Nikhilkumar D. Abhangi ◽  
G. M. Deheri

An endeavour has been made to study and analyze the behaviour of a magnetic fluid-based squeeze film between curved transversely rough rotating circular plates when the curved upper plate lying along a surface determined by an exponential function approaches the curved lower plate along the surface governed by a secant function. A magnetic fluid is used as the lubricant in the presence of an external magnetic field oblique to the radial axis. The random roughness of the bearing surfaces is characterised by a stochastic random variable with nonzero mean, variance, and skewness. The associated nondimensional averaged Reynolds equation is solved with suitable boundary conditions in dimensionless form to obtain the pressure distribution, leading to the expression for the load carrying capacity. The results establish that the bearing system registers an enhanced performance as compared to that of the bearing system dealing with a conventional lubricant. This investigation proves that albeit the bearing suffers due to transverse surface roughness, there exist sufficient scopes for obtaining a relatively better performance in the case of negatively skewed roughness by properly choosing curvature parameters and the rotation ratio. It is appealing to note that the negative variance further enhances this positive effect.


Sign in / Sign up

Export Citation Format

Share Document