ISRN Mechanical Engineering
Latest Publications


TOTAL DOCUMENTS

137
(FIVE YEARS 0)

H-INDEX

11
(FIVE YEARS 0)

Published By Hindawi (International Scholarly Research Network)

2090-5130, 2090-5122

2014 ◽  
Vol 2014 ◽  
pp. 1-37
Author(s):  
Fabio Gori

The mass and energy-capital conservation equations are employed to study the time evolution of mass and price of nonrenewable energy resources, extracted and sold to the market, in case of no-accumulation and no-depletion, that is, when the resources are extracted and sold to the market at the same mass flow rate. The Hotelling rule for nonrenewable resources, that is, an exponential increase of the price at the rate of the current interest multiplied the time, is shown to be a special case of the general energy-capital conservation equation when the mass flow rate of extracted resources is unity. The mass and energy-capital conservation equations are solved jointly to investigate the time evolution of the extracted resources.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Sandeep Soni ◽  
D. P. Vakharia

The steady state performance analysis of short circular journal bearing is conducted using the viscosity correction model under thin film lubrication conditions. The thickness of adsorbed molecular layers is the most critical factor in studying thin film lubrication, and is the most essential parameter that distinguishes thin film from thick film lubrication analysis. The interaction between the lubricant and the surface within a very narrow gap has been considered. The general Reynolds equation has been derived for calculating thin film lubrication parameters affecting the performance of short circular journal bearing. Investigation for the load carrying capacity, friction force, torque, and power loss for the short circular journal bearing under the consideration of adsorbed layer thickness (2δ) has been carried out. The analysis is carried out for the short bearing approximation (L/D=0.5) using Gumbel’s boundary condition. It has been found that the steady state performance parameters are comparatively higher for short circular journal bearing under the consideration of adsorbed layer thickness than for plain circular journal bearing. The load carrying capability of adsorbed layer thickness considered bearing is observed to be high for the specified operating conditions. This work could promote the understanding and research for the mechanism of the nanoscale thin film lubrication.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Li Xiangyang ◽  
Chen Wanqiang

This paper aims at diagnosing the fault of rolling bearings and establishes the system of dynamics model with the consideration of rolling bearing with nonlinear bearing force, the radial clearance, and other nonlinear factors, using Runge-Kutla such as Hertzian elastic contactforce and internal radial clearance, which are solved by the Runge-Kutta method. Using simulated data of the normal state, a self-adaptive alarm method for bearing condition based on one-class support vector machine is proposed. Test samples were diagnosed with a recognition accuracy over 90%. The present method is further applied to the vibration monitoring of rolling bearings. The alarms under the actual abnormal condition meet the demand of bearings monitoring.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Amin Rahimzadeh ◽  
Parviz Ghadimi ◽  
Mohammad A. Feizi Chekab ◽  
Mohammad H. Jabbari

The objective of this study is to numerically investigate transmission coefficient of submerged trapezoidal breakwater of various configurations subjected to solitary waves. Boussinesq equations of Madsen and Sorensen are applied as governing equations for simulation purposes. Discretization of governing equations is accomplished using Galerkin finite element method and Adams-Bashforth-Moulton predictor-corrector method is considered for time integration. In order to obtain transmission coefficients, two gauges are considered before and after the submerged breakwater to record initial and transmitted wave heights, respectively. To examine the effect of configuration of breakwaters on their transmission coefficients, submergence ratio and crest width ratio are defined and analyzed. Different submergence ratios and various crest width ratios are considered. Computed results indicate how transmission coefficient decreases with the increase over different ranges of crest width ratio, for all values of submergence ratio. Furthermore, keeping crest width and submergence ratios constant, solitary waves with higher initial heights are simulated. Results of simulation indicate that transmission coefficient becomes higher for the same breakwater characteristics. Finally, a parametric study is conducted on the effect of side slopes of breakwaters. It is shown that side slopes have strong effect on wave transmission.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Safarudin Gazali Herawan ◽  
Abdul Hakim Rohhaizan ◽  
Azma Putra ◽  
Ahmad Faris Ismail

The waste heat from exhaust gases represents a significant amount of thermal energy, which has conventionally been used for combined heating and power applications. This paper explores the performance of a naturally aspirated spark ignition engine equipped with waste heat recovery mechanism (WHRM). The experimental and simulation test results suggest that the concept is thermodynamically feasible and could significantly enhance the system performance depending on the load applied to the engine. The simulation method is created using an artificial neural network (ANN) which predicts the power produced from the WHRM.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Reza Aghayari ◽  
Heydar Madah ◽  
Bahram Keyvani ◽  
Abdolreza Moghadassi ◽  
Fatemeh Ashori

This paper refers to the Overall Heat Transfer Coefficient of Nano Fluids (OHTCNF) in heat exchangers and the relevant effective parameters. An improvement in Heat Transfer (HT) and OHTCNF containing nanoaluminum oxide with ca. 20 nm particle size and particular volume fraction in the range of 0.001-0.002 has been reported. The effects of temperature and concentration of nanoparticles on HT variation as well as Overall Heat Transfer Coefficient (OHTC) in a countercurrent double tube heat exchanger with turbulent flow have been studied. The experimental results show a remarkable 8%–10% rise in the mean HT and the OHTC. Accordingly, with an increase in the processing temperature and/or particle concentration the OHTC was observed to increase.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Mohsen Saffari Pour ◽  
Yang Weihong

The high temperature air combustion (HiTAC) is an advanced promising technology for heat recovery, energy saving, and stability improvement of flame. Computational fluid dynamic (CFD) is known as an applied tool to execute HiTAC modeling. In this paper, performances of pulverized coal combustion under the high preheated and oxygen deficient air are studied by both experimental and numerical methodology. The experimental facilities have been accomplished in a HiTAC chamber with coal injection velocity that ranges from 10 to 40 m/s. In order to achieve different preheated temperatures, the combustion air in such system is diluted by variable steam percentages from 0 to 44%. Results of mathematical simulation and experimental tests present convincible agreement through whole region. It is concluded that NOX emission is reduced by increasing the steam percentage in the oxidizer due to decreasing the flame temperature. Besides, graphical contours show that by adding more steam to oxidizer composition, the oxygen concentration decreased. Additionally, results show that when the injection speed of fuel is increased, NOX emission is also increased, and when the injection rate of preheated air is increased, NOX emission shows decreasing trend. Further contribution in future is needed to investigate the performance of such technologies.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Muhammad Khan ◽  
S. Kamran Afaq ◽  
Nizar Ullah Khan ◽  
Saboor Ahmad

Cycle time of a part in injection molding process is very important as the rate of production and the quality of the parts produced depend on it, whereas the cycle time of a part can be reduced by reducing the cooling time which can only be achieved by the uniform temperature distribution in the molded part which helps in quick dissipation of heat. Conformal cooling channel design is the solution to the problem which basically “conforms” to the shape of cavity in the molds. This paper describes the analytical study of cooling analysis of different types of cooling channel designs. The best cooling channel design is also selected on the basis of minimum time to reach ejection temperature, uniform temperature distribution, and minimum warpage of part. “Creo Elements/Pro 5.0” is used to model the case study, its molds, and the cooling circuit whereas analytical study is done using “Autodesk Moldflow Advisor 2013 (AMFA).”


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Mohd Azhar Ahmad ◽  
Safarudin Gazali Herawan ◽  
Ahmad Anas Yusof

The adsorption of remazol brilliant blue R (RBBR) dye on pinang frond based activated carbon (PF-AC) was investigated in a batch process. The effects of initial dye concentration, contact time, solution temperature, and solution pH were evaluated. The adsorption equilibrium and kinetic were found to follow Freundlich isotherm models and pseudo-second-order kinetic model, respectively. The mechanism of the adsorption process was found from the intraparticle diffusion model. Result from adsorption thermodynamic show that interaction for RBBR dye was found to be feasible, nonspontaneous, and endothermic. The results indicated that the PF-AC is very effective for the RBBR adsorption from aqueous solution.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
B. Durga Rao ◽  
R. Ganesh Narayanan

The main aim of the present work is to study the effect of shoulder diameter, rotational speed, and welding speed on the springback performance of friction stir welded sheets. The friction stir welded sheets are made by welding 6061T6 to 5052H32, and 6061T6 to 6061T6. The springback has been evaluated after V-bending of welded sheets, involving pure bending. The relation between springback and weld zone properties like yield strength, Young’s modulus, yield strength to Young’s modulus ratio, and strain hardening exponent is identified. It is found that, with increase in shoulder diameter, rotational speed, and welding speed, the springback of friction stir welded sheets has reduced, and is independent of the material combinations. The relation between springback and weld properties change coincides with existing knowledge about springback. The friction stir welded sheets show better springback performance as compared to 6061T6 base material, but inferior to 5052H32 base material. By reducing the punch nose radius, the springback of friction stir welded sheets can be minimized. It is also concluded that, by proper tailoring of Al grades, and by alteration of weld zone properties through friction stir welding, the springback of friction stir welded sheets can be reduced considerably.


Sign in / Sign up

Export Citation Format

Share Document