Reliable, Real-Time, Low Cost Cardiac Health Monitoring System for Affordable Patient Care

Author(s):  
Meghamala Dutta ◽  
Sourav Dutta ◽  
Swati Sikdar ◽  
Deepneha Dutta ◽  
Gayatri Sharma ◽  
...  
2020 ◽  
Vol 12 (2) ◽  
pp. 102-118
Author(s):  
Alexandre dos Santos Gonsalves ◽  
Robson Augusto Siscoutto

The health monitoring system has become indispensable in the treatment of patients, especially for those who have chronic illnesses and need real-time observation from doctors and specialists. This article presents a low-cost wireless solution for monitoring, in real time, vital signs such as cardiac beats, breathing and blood pressure, collecting and sending data to a remote computer. During development, a wireless sensor box was created, using Arduino Nano and bluetooh sensors, where this box is attached to the patient's body, respecting the patient's flexibility and mobility during physical exercises. During the monitoring, the captured data is transmitted via the bluetooh network. The box uses a battery for its food. After the evaluation, the solution obtained a performance and correctness of the data close to 100%, being considered fit for use. Several experiments were carried out to analyze, quantify and qualify the solution, being discussed and presented in this paper.


2014 ◽  
Vol 9 (3) ◽  
pp. 31-38 ◽  
Author(s):  
Asad Khaliq ◽  
◽  
M. Abdullah Awan ◽  
M. UmairSaleh ◽  
M. Waseem Abbas HusnulMaab ◽  
...  

Author(s):  
Thomas Feldhausen ◽  
Asimm Hirani ◽  
Walter King ◽  
Roby Lynn ◽  
Thomas Kurfess

Abstract Monitoring of the health of water-based coolant used for machining requires measurement of various parameters of the coolant, including refractive index, temperature, pH, and turbidity. One of the primary parameters that is used to determine the concentration of the coolant is the refractive index, which is typically measured manually by an operator at regular intervals during machine operation. This paper describes the conceptualization and preliminary design of a coolant health monitoring system that will automatically measure the refractive index of the coolant and will digitize the resulting measurement for communication to a factory supervisory control and data acquisition (SCADA) system. To enable rapid integration into a factory’s network architecture, the coolant concentration measurement will be transmitted by the monitoring system using the MTConnect format. Having an MTConnect-enabled sensor will allow the data to be remotely aggregated and compared to other machine data to help give a better understanding of overall machine health. The economical approach to its design allows the coolant health monitor to be realizable for both small manufacturing enterprises (SMEs) and large manufacturers alike. This widespread implementation will further benefit industry’s movement toward Internet-of-Things (IoT)-equipped manufacturing facilities.


Sign in / Sign up

Export Citation Format

Share Document