Prediction of Formability of Bi-axial Pre-strained Dual Phase Steel Sheets Using Stress-Based Forming Limit Diagram

Author(s):  
Shamik Basak ◽  
Kaushik Bandyopadhyay ◽  
Sushanta Kumar Panda ◽  
Partha Saha
2007 ◽  
Vol 344 ◽  
pp. 113-118 ◽  
Author(s):  
Massimo Tolazzi ◽  
Marion Merklein

This paper presents a method for the experimental determination of forming limit diagrams under non linear strain paths. The method consists in pre-forming the sheets under two different strain conditions: uniaxial and biaxial, and then stretching the samples, cut out of the preformed sheets, using a Nakajima testing setup. The optical deformation measurement system used for the process analysis (ARAMIS, Company GOM) allows to record and to analyze the strain distribution very precisely with respect to both time and space. As a reference also the FLDs of the investigated grades (the deep drawing steel DC04, the dual phase steel DP450 and the aluminum alloy AA5754) in as-received conditions were determined. The results show as expected an influence of the pre-forming conditions on the forming limit of the materials, with an increased formability in the case of biaxial stretching after uniaxial pre-forming and a reduced formability for uniaxial load after biaxial stretching if compared to the case of linear strain paths. These effects can be observed for all the investigated materials and can be also described in terms of a shifting of the FLD, which is related to the art and magnitude of the pre-deformation.


Author(s):  
Shamik Basak ◽  
Sushanta Kumar Panda

The selection of advanced material model considering the anisotropy mechanical properties of the thin sheet is vital in order to estimate stress based forming limit diagram (σ-FLD). In present study associative plasticity theory was applied indulging Barlat Yld-96 anisotropy yield function and the Swift hardening law was implemented for estimating the limiting stresses from the conventional strain FLD (ε-FLD) of an automotive grade dual phase steel DP600. Three different approaches were made to evaluate Yld-96 anisotropy coefficients using experimental results of stack compression and tensile tests. To impose complex strain path, two stage stretch forming processes were simulated in finite element solver LS-DYNA. After biaxial pre-straining, the sample geometries were varied to achieve different strain paths during the second stage of deformation. The results indicated that there was negligible difference in limiting stress estimated by Yld-96 plasticity theory when the anisotropy coefficients were calculated based on plastic strain at ultimate tensile strength compare to that by minimum plastic work method. It was concluded that the dynamic shift of ε-FLD could be restricted by σ-FLD estimated using Yld 96 plasticity theory, and hence it was proposed to be a suitable damage model to evaluate formability of pre-strained DP600 steels.


2014 ◽  
Vol 1004-1005 ◽  
pp. 209-213
Author(s):  
Li Bo Pan ◽  
Hong Chuan Zhu ◽  
Ze Hong Lei ◽  
Zhi Jian Zhang

Strain paths during sheet metal forming are always complex and nonlinear. Forming limit diagram (FLD) is a common method to determine failure in the past decades. However, it is only suitable for linear strain path condition. Regarding dual phase steel DP780, a special experiment was designed and carried out on Zwick Cupping equipment to get nonlinear strain paths. And the strain status was analyzed in FLD. It was found that FLD cannot predict failure precisely in this case. A new approach proposed by Stoughton and Yoon which based on polar effective plastic strain was introduced to analyze this nonlinear strain paths condition, the result is in good agreement with experiment, which indicated that Polar Effective Plastic Strain Diagram was an effective and precise tool to determine failure especially for complex nonlinear strain paths forming.


2018 ◽  
Vol 58 (6) ◽  
pp. 1136-1145
Author(s):  
Hidekazu Minami ◽  
Kaneharu Okuda ◽  
Shinjiro Kaneko ◽  
Yasunobu Nagataki

2013 ◽  
Author(s):  
Libo Pan ◽  
Bernard Rolfe ◽  
Alireza Asgari ◽  
Matthias Weiss ◽  
Zhijian Zhang

Sign in / Sign up

Export Citation Format

Share Document