Atrial Pacing to Prevent Atrial Fibrillation: Is There Any Evidence of Its Real Efficacy?

2002 ◽  
pp. 485-491
Author(s):  
S. Saksena ◽  
A. Filipecki
Circulation ◽  
1997 ◽  
Vol 95 (10) ◽  
pp. 2416-2422 ◽  
Author(s):  
Claudio Pandozi ◽  
Leopoldo Bianconi ◽  
Mauro Villani ◽  
Antonio Castro ◽  
Giuliano Altamura ◽  
...  

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
O Yasin ◽  
A Sugrue ◽  
M Van Zyl ◽  
A Ladejobi ◽  
J Tri ◽  
...  

Abstract Background Slowing electrical conduction by cooling the myocardium can be used for defibrillation. We previously demonstrated the efficacy of a small cold device placed in oblique sinus (OS) in terminating atrial fibrillation (AF). However, the parameters needed to achieve effective atrial defibrillation are unknown. Purpose Assess effect of the size of cooled myocardium on frequency of AF termination in acute canine animal models. Methods Sternotomy was performed under general anesthesia in 10 acute canine experiments. AF was induced using rapid atrial pacing and intra-myocardial epinephrine and acetylcholine injections. Once AF sustained for at least 30s, either a cool (7–9°C) or placebo (body temperature) device was placed in the OS. Four device sizes were tested; ½X½, ¾X¾, and 1X1 inch devices and two ¾X¾ inch devices placed side by side simultaneously. Time to AF termination was recorded. Chi-squared or Fisher's exact test were used to compare the frequency of arrhythmia termination with cooling versus placebo. Results A total of 166 applications were performed (89 cool vs 77 placebo) in 10 animal experiments. Overall, AF terminated in 82% of the cooling applications vs. 67.5% of placebo (P=0.03, Figure 1). For the ½X½ inch device 88% of cold applications restored sinus rhythm vs. 63.6% for placebo (P=0.05). The frequency of sinus restoration for cold ¾X¾, 1X1 and two ¾X¾ side by side devices was 86.7%, 83.3% and 70% respectively. Time to sinus restoration when achieved was within three minutes was also not significantly changed. Conclusion Placing a cool device in the oblique sinus can terminate AF and efficacy is not affected by the size of device. Funding Acknowledgement Type of funding source: Private grant(s) and/or Sponsorship. Main funding source(s): MediCool Technologies


1996 ◽  
Vol 27 (7) ◽  
pp. 1713-1721 ◽  
Author(s):  
Huagui Li ◽  
John Hare ◽  
Kashef Mughal ◽  
David Krum ◽  
Michael Biehl ◽  
...  

Circulation ◽  
2013 ◽  
Vol 128 (7) ◽  
pp. 687-693 ◽  
Author(s):  
Chu-Pak Lau ◽  
Ngarmukos Tachapong ◽  
Chun-Chieh Wang ◽  
Jing-feng Wang ◽  
Haruhiko Abe ◽  
...  

2008 ◽  
Vol 9 (3) ◽  
pp. 256-262
Author(s):  
Alessandro Capucci ◽  
Giovanni Quinto Villani ◽  
David Igel ◽  
Tiziana Marotta

2018 ◽  
Vol 19 (1) ◽  
pp. 147032031875526 ◽  
Author(s):  
Xuewen Wang ◽  
Guangping Li

Introduction: Activation of the renin-angiotensin system (RAS) plays an important role in atrial electrical remodeling (AER). The purpose of the present study was to evaluate the effects of irbesartan on cardiac sodium current (INa) in a canine model of atrial fibrillation. Materials and methods: Eighteen dogs were randomized into sham, pacing or pacing+irbesartan groups ( n = 6 in each group). The dogs in the pacing and irbesartan group were paced at 500 bpm for two weeks. Irbesartan (60 mg·kg−1·d−1) was administered orally in the pacing+irbesartan groups. INa was recorded using the whole-cell patch clamp technique from canine atrial myocytes. The expressions of cardiac Na+ channels (Nav1.5) mRNA were semi-quantified by reverse transcription-polymerase chain reaction. Results: Our results showed that INa density and Nav1.5 mRNA expression in the pacing group decreased significantly ( p < 0.05 vs. sham). However, rapid atrial pacing had no effects on the half-activation voltage (V1/2act) and half-inactivation voltage (V1/2inact) of INa ( p > 0.05 vs. sham). Irbesartan significantly increased INa densities and gene expression and hyperpolarized V1/2act without concomitant changes in V1/2inact. Conclusions: Irbesartan significantly increased INa densities, which contributed to improving intra-atrial conduction and prevented the induction and promotion of AF in atrial pacing dogs.


2004 ◽  
Vol 286 (6) ◽  
pp. H2072-H2077 ◽  
Author(s):  
Angela M. Park ◽  
Chung-Chuan Chou ◽  
Paul C. Drury ◽  
Yuji Okuyama ◽  
Anish Peter ◽  
...  

The thoracic vein hypothesis of chronic atrial fibrillation (AF) posits that rapid, repetitive activations from muscle sleeves within thoracic veins underlie the mechanism of sustained AF. If this is so, thoracic vein ablation should terminate sustained AF and prevent its reinduction. Six female mongrel dogs underwent chronic pulmonary vein (PV) pacing at 20 Hz to induce sustained (>48 h) AF. Bipolar electrodes were used to record from the atria and thoracic veins, including the vein of Marshall, four PVs, and the superior vena cava. Radio frequency (RF) application was applied around the PVs and superior vena cava and along the vein of Marshall until electrical activity was eliminated. Computerized mapping (1,792 electrodes, 1 mm resolution) was also performed. Sustained AF was induced in 30.6 ± 6.5 days, and ablation was done 17.3 ± 8.5 days afterward. Before ablation, the PVs had shorter activation cycle lengths than the atria, and rapid, repetitive activations were observed in the PVs. All dogs converted to sinus rhythm during ( n = 4 dogs) or within 90 min of completion of RF ablation. Rapid atrial pacing afterward induced only nonsustained (<60 s) AF in all dogs. Average AF cycle lengths after reinduction were significantly ( P = 0.01) longer (183 ± 31.5 ms) than baseline (106 ± 16.2 ms). There were no activation cycle length gradients after RF application. We conclude that thoracic vein ablation converts canine sustained AF into sinus rhythm and prevents the reinduction of sustained AF. These findings suggest that thoracic veins are important in the maintenance of AF in dogs.


Sign in / Sign up

Export Citation Format

Share Document