A Sigma–Delta Controlled Power Converter for Energy Harvesting Applications

Author(s):  
Rocco d’Aparo ◽  
Simone Orcioni ◽  
Massimo Conti
Author(s):  
Varun Lobo ◽  
Arindam Banerjee ◽  
Nyuykighan Mainsah ◽  
Jonathan Kimball

A Vortex Induced Vibration (VIV) based hydrokinetic energy system is discussed in this paper. Vibrations induced on a body (facing an external flow) due to the periodic irregularities in the flow caused by boundary layer separation are called as VIV. This separation of the boundary layer from the surface causes vortex formation in the wake region of the cylinder. The lift-force or the transverse oscillation of the vibrating cylinder depends upon the strength and modes of the vortex formed. The VIV energy harvesting system is based on the idea of maximizing rather than spoiling vortex shedding and was discovered in 2004 at the University of Michigan by Bernitsas and Raghavan. The vibrating bodies will in turn be used to harness energy using an efficient power-take-off system. In this paper, we discuss the hydrodynamic design of such a VIV based energy harvesting system using computational fluid dynamics. A fluid structure interaction calculation is performed to determine the forces on the surface of a bluff body due to separation of vortices from the surface. The hydrodynamic forces that act on such a system depend on the cylinder diameter, flow velocity, modes of vortex shedding and arrangement of cylinder(s). A detailed computational study on the effect of different design parameters listed above are first carried on a single cylinder arrangement; this is followed by a more detailed analysis that is extended to multiple cylinders. For a two-cylinder arrangement, the positions in which the cylinders are placed are also found to play an important role, as the vortex shed from one cylinder may be used to enhance the forces of lift on another cylinder present in its wake. Furthermore, the design of a VIV generator requires optimal damping and low mass ratio to enable high energy conversion via an efficient power take-off mechanism. The working and design considerations of the energy converter is outlined starting with a set of basic definitions pertaining to this technology. A tubular linear interior permanent magnet generator (TL-IPM) connected to a power converter is used; a linear generator was chosen to minimize mechanical components, such as gears or cams in the system.


2013 ◽  
Vol 772 ◽  
pp. 731-734
Author(s):  
Shi Zhong Guo ◽  
Kai Xie ◽  
Ying Hao Ye ◽  
Xiao Ping Li

This paper presents a ultra low voltage resonant converter for thermoelectric energy harvesting.A key challenge in designing energy harvesting system is that thermoelectric generators output a very low voltage (-0.3V~0.3V). Therefore, a power converter is used to boost the output voltage of the energy transducer and transfer energy into an energy buffer for storage. The converter operates from input voltages ranging from-500mV to-60mV and 60mV to 500mV while supplying a 4.2 V DC output. The converter consumes 88μW of quiescent power, delivers up to 1.6 (1.8) mW of output power, and is 65(67)% efficient for a-100mV and 100mV input, respectively.


Sign in / Sign up

Export Citation Format

Share Document