New Methods for Improvement of the Computational Efficiency of the Lagrangian Particle Dispersion Model

Author(s):  
Boštjan Grašič ◽  
Marija Zlata Božnar ◽  
Primož Mlakar
2013 ◽  
Vol 21 (3) ◽  
pp. 466-473 ◽  
Author(s):  
Xingqin An ◽  
Bo Yao ◽  
Yan Li ◽  
Nan Li ◽  
Lingxi Zhou

2021 ◽  
Vol 244 ◽  
pp. 117791 ◽  
Author(s):  
Félix Gomez ◽  
Bruno Ribstein ◽  
Laurent Makké ◽  
Patrick Armand ◽  
Jacques Moussafir ◽  
...  

2014 ◽  
Vol 14 (17) ◽  
pp. 9363-9378 ◽  
Author(s):  
T. Ziehn ◽  
A. Nickless ◽  
P. J. Rayner ◽  
R. M. Law ◽  
G. Roff ◽  
...  

Abstract. This paper describes the generation of optimal atmospheric measurement networks for determining carbon dioxide fluxes over Australia using inverse methods. A Lagrangian particle dispersion model is used in reverse mode together with a Bayesian inverse modelling framework to calculate the relationship between weekly surface fluxes, comprising contributions from the biosphere and fossil fuel combustion, and hourly concentration observations for the Australian continent. Meteorological driving fields are provided by the regional version of the Australian Community Climate and Earth System Simulator (ACCESS) at 12 km resolution at an hourly timescale. Prior uncertainties are derived on a weekly timescale for biosphere fluxes and fossil fuel emissions from high-resolution model runs using the Community Atmosphere Biosphere Land Exchange (CABLE) model and the Fossil Fuel Data Assimilation System (FFDAS) respectively. The influence from outside the modelled domain is investigated, but proves to be negligible for the network design. Existing ground-based measurement stations in Australia are assessed in terms of their ability to constrain local flux estimates from the land. We find that the six stations that are currently operational are already able to reduce the uncertainties on surface flux estimates by about 30%. A candidate list of 59 stations is generated based on logistic constraints and an incremental optimisation scheme is used to extend the network of existing stations. In order to achieve an uncertainty reduction of about 50%, we need to double the number of measurement stations in Australia. Assuming equal data uncertainties for all sites, new stations would be mainly located in the northern and eastern part of the continent.


2005 ◽  
Vol 24 (1/2/3/4) ◽  
pp. 114 ◽  
Author(s):  
Efstratios Davakis ◽  
Spyros Andronopoulos ◽  
George A. Sideridis ◽  
Eleftherios G. Kastrinakis ◽  
Stavros G. Nychas ◽  
...  

2005 ◽  
Vol 5 (9) ◽  
pp. 2461-2474 ◽  
Author(s):  
A. Stohl ◽  
C. Forster ◽  
A. Frank ◽  
P. Seibert ◽  
G. Wotawa

Abstract. The Lagrangian particle dispersion model FLEXPART was originally (about 8 years ago) designed for calculating the long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. In the meantime FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis. Its application fields were extended from air pollution studies to other topics where atmospheric transport plays a role (e.g., exchange between the stratosphere and troposphere, or the global water cycle). It has evolved into a true community model that is now being used by at least 25 groups from 14 different countries and is seeing both operational and research applications. A user manual has been kept actual over the years and was distributed over an internet page along with the model's source code. In this note we provide a citeable technical description of FLEXPART's latest version (6.2).


Sign in / Sign up

Export Citation Format

Share Document