Review of “Source-receptor matrix calculation for deposited mass with the Lagrangian particle dispersion model FLEXPART v10.2 in backward mode” by Eckhardt et al

2017 ◽  
Author(s):  
Anonymous
2003 ◽  
Vol 3 (4) ◽  
pp. 4515-4548 ◽  
Author(s):  
P. Seibert ◽  
A. Frank

Abstract. The possibility to calculate linear-source receptor relationships for the transport of atmospheric trace substances with a Lagrangian particle dispersion model (LPDM) running in backward mode is shown and presented with many tests and examples. The derivation includes the action of sources and of any first-order processes (transformation with prescribed rates, dry and wet deposition, radioactive decay, ...). The backward mode is computationally advantageous if the number of receptors is less than the number of sources considered. The combination of an LPDM with the backward (adjoint) methodology is especially attractive for the application to point measurements, which can be handled without artificial numerical diffusion. Practical hints are provided for source-receptor calculations with different settings, both in forward and backward mode. The equivalence of forward and backward calculations is shown in simple tests for release and sampling of particles, pure wet deposition, pure convective redistribution and realistic transport over a short distance. Furthermore, an application example explaining measurements of Cs-137 in Stockholm as transport from areas contaminated heavily in the Chernobyl disaster is included.


2017 ◽  
Author(s):  
Sabine Eckhardt ◽  
Massimo Cassiani ◽  
Nikolaos Evangeliou ◽  
Espen Sollum ◽  
Ignacio Pisso ◽  
...  

Abstract. Existing Lagrangian particle dispersion models are capable of establishing source-receptor relationships by running either forward or backward in time. For many applications, backward simulations can be computationally more efficient by several orders of magnitude. However, to date, the backward modelling capabilities have been limited to atmospheric concentrations or mixing ratios. In this paper, we extend the backward modelling technique to substances deposited at the Earth's surface by wet scavenging and dry deposition. This facilitates efficient calculation of emission sensitivities for deposition quantities, which opens new application fields such as the comprehensive analysis of measured deposition quantities, or of deposition recorded in snow samples or ice cores. This could also include inverse modelling of emission sources based on such measurements. We have tested the new scheme as implemented in the Lagrangian particle dispersion model FLEXPART v10.2 by comparing results from forward and backward calculations. We also present an example application for black carbon concentrations recorded in Arctic snow.


2004 ◽  
Vol 4 (1) ◽  
pp. 51-63 ◽  
Author(s):  
P. Seibert ◽  
A. Frank

Abstract. The possibility to calculate linear-source receptor relationships for the transport of atmospheric trace substances with a Lagrangian particle dispersion model (LPDM) running in backward mode is shown and presented with many tests and examples. This mode requires only minor modifications of the forward LPDM. The derivation includes the action of sources and of any first-order processes (transformation with prescribed rates, dry and wet deposition, radioactive decay, etc.). The backward mode is computationally advantageous if the number of receptors is less than the number of sources considered. The combination of an LPDM with the backward (adjoint) methodology is especially attractive for the application to point measurements, which can be handled without artificial numerical diffusion. Practical hints are provided for source-receptor calculations with different settings, both in forward and backward mode. The equivalence of forward and backward calculations is shown in simple tests for release and sampling of particles, pure wet deposition, pure convective redistribution and realistic transport over a short distance. Furthermore, an application example explaining measurements of Cs-137 in Stockholm as transport from areas contaminated heavily in the Chernobyl disaster is included.


2013 ◽  
Vol 21 (3) ◽  
pp. 466-473 ◽  
Author(s):  
Xingqin An ◽  
Bo Yao ◽  
Yan Li ◽  
Nan Li ◽  
Lingxi Zhou

2021 ◽  
Vol 244 ◽  
pp. 117791 ◽  
Author(s):  
Félix Gomez ◽  
Bruno Ribstein ◽  
Laurent Makké ◽  
Patrick Armand ◽  
Jacques Moussafir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document