Historic Changes in Terrestrial Carbon Storage

Author(s):  
R. A. Houghton
2018 ◽  
Vol 95 ◽  
pp. 343-352 ◽  
Author(s):  
Jinzhu Wang ◽  
Qian Zhang ◽  
Taoji Gou ◽  
Jianbing Mo ◽  
Zifang Wang ◽  
...  

2016 ◽  
Vol 12 (1) ◽  
pp. 51-73 ◽  
Author(s):  
B. A. A. Hoogakker ◽  
R. S. Smith ◽  
J. S. Singarayer ◽  
R. Marchant ◽  
I. C. Prentice ◽  
...  

Abstract. A new global synthesis and biomization of long (> 40 kyr) pollen-data records is presented and used with simulations from the HadCM3 and FAMOUS climate models and the BIOME4 vegetation model to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Simulated biome distributions using BIOME4 driven by HadCM3 and FAMOUS at the global scale over time generally agree well with those inferred from pollen data. Global average areas of grassland and dry shrubland, desert, and tundra biomes show large-scale increases during the Last Glacial Maximum, between ca. 64 and 74 ka BP and cool substages of Marine Isotope Stage 5, at the expense of the tropical forest, warm-temperate forest, and temperate forest biomes. These changes are reflected in BIOME4 simulations of global net primary productivity, showing good agreement between the two models. Such changes are likely to affect terrestrial carbon storage, which in turn influences the stable carbon isotopic composition of seawater as terrestrial carbon is depleted in 13C.


2013 ◽  
Vol 9 (4) ◽  
pp. 1571-1587 ◽  
Author(s):  
R. O'ishi ◽  
A. Abe-Ouchi

Abstract. When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago) is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 concentration (185 ppm compared to a preindustrial level of 285 ppm). In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ). The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback) and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM). Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO2. In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO2 during the LGM.


1996 ◽  
Vol 6 (3) ◽  
pp. 806-814 ◽  
Author(s):  
A. R. Townsend ◽  
B. H. Braswell ◽  
E. A. Holland ◽  
J. E. Penner

2013 ◽  
Vol 19 (7) ◽  
pp. 2104-2116 ◽  
Author(s):  
Jianyang Xia ◽  
Yiqi Luo ◽  
Ying-Ping Wang ◽  
Oleksandra Hararuk

1993 ◽  
Vol 3 (3) ◽  
pp. 67 ◽  
Author(s):  
I. Colin Prentice ◽  
Martin T. Sykes ◽  
Michael Lautenschlager ◽  
Sandy P. Harrison ◽  
Olga Denissenko ◽  
...  

2013 ◽  
Vol 10 (7) ◽  
pp. 11077-11109 ◽  
Author(s):  
G. Bala ◽  
N. Devaraju ◽  
R. K. Chaturvedi ◽  
K. Caldeira ◽  
R. Nemani

Abstract. Global carbon budget studies indicate that the terrestrial ecosystems have remained a~large sink for carbon despite widespread deforestation activities. CO2-fertilization, N deposition and re-growth of mid-latitude forests are believed to be key drivers for land carbon uptake. In this study, we assess the importance of N deposition by performing idealized near-equilibrium simulations using the Community Land Model 4.0 (CLM4). In our equilibrium simulations, only 12–17% of the deposited Nitrogen is assimilated into the ecosystem and the corresponding carbon uptake can be inferred from a C : N ratio of 20:1. We calculate the sensitivity of the terrestrial biosphere for CO2-fertilization, climate warming and N deposition as changes in total ecosystem carbon for unit changes in global mean atmospheric CO2 concentration, global mean temperature and Tera grams of Nitrogen deposition per year, respectively. Based on these sensitivities, it is estimated that about 242 PgC could have been taken up by land due to the CO2 fertilization effect and an additional 175 PgC taken up as a result of the increased N deposition since the pre-industrial period. Because of climate warming, terrestrial ecosystem could have lost about 152 PgC during the same period. Therefore, since preindustrial times terrestrial carbon losses due to warming may have been approximately compensated by effects of increased N deposition, whereas the effect of CO2-fertilization is approximately indicative of the current increase in terrestrial carbon stock. Our simulations also suggest that the sensitivity of carbon storage to increased N deposition decreases beyond current levels, indicating climate warming effects on carbon storage may overwhelm N deposition effects in the future.


Sign in / Sign up

Export Citation Format

Share Document