The Use of Geomatic Technologies with the Purpose of Estimating Terrestrial Carbon Storage Capacity at a Level of Forest

Author(s):  
Merve ERSOY MİRİCİ ◽  
Süha BERBEROĞLU ◽  
Ahmet ÇİLEK
2013 ◽  
Vol 19 (7) ◽  
pp. 2104-2116 ◽  
Author(s):  
Jianyang Xia ◽  
Yiqi Luo ◽  
Ying-Ping Wang ◽  
Oleksandra Hararuk

2015 ◽  
Vol 31 (3) ◽  
pp. 240-243 ◽  
Author(s):  
Numa P. Pavón ◽  
Christian O. Ayala ◽  
Ana Paola Martínez-Falcón

2006 ◽  
Vol 2 (5) ◽  
pp. 711-743 ◽  
Author(s):  
L. C. Skinner

Abstract. Given the magnitude and dynamism of the deep marine carbon reservoir, it is almost certain that past glacial – interglacial fluctuations in atmospheric CO2 have relied at least in part on changes in the carbon storage capacity of the deep sea. To date, physical ocean circulation mechanisms that have been proposed as viable explanations for glacial – interglacial CO2 change have focussed almost exclusively on dynamical or kinetic processes. Here, a simple mechanism is proposed for increasing the carbon storage capacity of the deep sea that operates via changes in the volume of southern-sourced deep-water filling the ocean basins, as dictated by the hypsometry of the ocean floor. It is proposed that a water-mass that occupies more than the bottom 3 km of the ocean will essentially determine the carbon content of the marine reservoir. Hence by filling this interval with southern-sourced deep-water (enriched in dissolved CO2 due to its particular mode of formation) the amount of carbon sequestered in the deep sea may be greatly increased. A simple box-model is used to test this hypothesis, and to investigate its implications. It is suggested that up to 70% of the observed glacial – interglacial CO2 change might be explained by the replacement of northern-sourced deep-water below 2.5 km water depth by its southern counterpart. Most importantly, it is found that an increase in the volume of southern-sourced deep-water allows glacial CO2 levels to be simulated easily with only modest changes in Southern Ocean biological export or overturning. If incorporated into the list of contributing factors to marine carbon sequestration, this mechanism may help to significantly reduce the "deficit" of explained glacial – interglacial CO2 change.


2016 ◽  
Vol 12 (1) ◽  
pp. 51-73 ◽  
Author(s):  
B. A. A. Hoogakker ◽  
R. S. Smith ◽  
J. S. Singarayer ◽  
R. Marchant ◽  
I. C. Prentice ◽  
...  

Abstract. A new global synthesis and biomization of long (> 40 kyr) pollen-data records is presented and used with simulations from the HadCM3 and FAMOUS climate models and the BIOME4 vegetation model to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Simulated biome distributions using BIOME4 driven by HadCM3 and FAMOUS at the global scale over time generally agree well with those inferred from pollen data. Global average areas of grassland and dry shrubland, desert, and tundra biomes show large-scale increases during the Last Glacial Maximum, between ca. 64 and 74 ka BP and cool substages of Marine Isotope Stage 5, at the expense of the tropical forest, warm-temperate forest, and temperate forest biomes. These changes are reflected in BIOME4 simulations of global net primary productivity, showing good agreement between the two models. Such changes are likely to affect terrestrial carbon storage, which in turn influences the stable carbon isotopic composition of seawater as terrestrial carbon is depleted in 13C.


2018 ◽  
Vol 32 (10) ◽  
pp. 1457-1475 ◽  
Author(s):  
Maria Emilia Röhr ◽  
Marianne Holmer ◽  
Julia K. Baum ◽  
Mats Björk ◽  
Katharyn Boyer ◽  
...  

2018 ◽  
Vol 10 (12) ◽  
pp. 4806 ◽  
Author(s):  
Carmen Andrade ◽  
Miguel Sanjuán

The fabrication of cement clinker releases CO2 due to the calcination of the limestone used as raw material, which contributes to the greenhouse effect. The industry is involved in a process of reducing this amount liberated to the atmosphere by mainly lowering the amount of clinker in the cements. The cement-based materials, such as concrete and mortars, combine part of this CO2 by a process called “carbonation”. Carbonation has been studied lately mainly due to the fact that it induces the corrosion of steel reinforcement when bringing the CO2 front to the surface of the reinforcing bars. Thus, the “rate of carbonation” of the concrete cover is characterized by and linked to the length of service life of concrete structures. The studies on how much CO2 is fixed by the hydrated phases are scarce and even less has been studied the influence of the type of cement. In present work, 15 cements were used to fabricate paste and concrete specimens withwater/cement (w/c) ratios of 0.6 and 0.45 which reproduce typical concretes for buildings and infrastructures. The amount of carbon dioxide uptake was measured through thermal gravimetry. The degree of carbonation, (DoC) is defined as the CO2 fixed with respect to the total theoretical maximum and the carbon storage capacity (CSC) as the carbonation uptake by a concrete element, a family or the whole inventory of a region or country. The results in the pastes where analyzed with respect to the uptake by concretes and indicated that: (a) the humidity of the pores is a critical parameter that favours the carbonation reaction as higher is the humidity (within the normal atmospheric values), (b) all types of cement uptake CO2 in function of the CaO of the clinker except the binders having slags, which can uptake additional CO2 giving aDoC near or above 100%. The CSC of Spain has been updated with respect to a previous publication resulting in proportions of 10.8–11.2% of the calcination emissions, through considering a ratio of “surface exposed/volume of the element” of 3 as an average of the whole Spanish asset of building and infrastructures.


Sign in / Sign up

Export Citation Format

Share Document