Temperature Dependence of O2-Oscillation Pattern of Spinach Thylakoids

Author(s):  
J. Messinger ◽  
G. Renger
1996 ◽  
Vol 51 (11-12) ◽  
pp. 823-832 ◽  
Author(s):  
K Burda ◽  
P He ◽  
K. P Bader ◽  
G. H Schmid

Abstract Five characteristic discontinuities of the pattern of oxygen evolution have been detected for the filamentous cyanobacterium Oscillatoria chalybea in the temperature range of 0°C to 30°C. The temperatures at which these discontinuities occur are: ≈ 5°C, ≈ 11°C, ≈ 15°C, ≈ 21°C and ≈ 25°C. The calculated initial 5-S state distribution, the miss parameter and the fraction of the fast transition S3 → S0+ O2 are affected. The discontinuities are observed at the same transition temperature also for Chlorella kessleri hence are not specific for the cyanobacterium. Based on these studies it is concluded that the not vanishing oxygen signal under the first flash of a flash train in Oscillatoria cannot have its origin in interactions between oxygen-evolving complexes. A decrease of temperature should slow down the expected charge exchanges, improve the oscillations, thus reduce or lower the first two oxygen amplitudes of the oscillatoria pattern. Lowering of the temperautres improves the oscillations but does not lower the first O2 signal of the pattern.


Author(s):  
Kenneth H. Downing ◽  
Robert M. Glaeser

The structural damage of molecules irradiated by electrons is generally considered to occur in two steps. The direct result of inelastic scattering events is the disruption of covalent bonds. Following changes in bond structure, movement of the constituent atoms produces permanent distortions of the molecules. Since at least the second step should show a strong temperature dependence, it was to be expected that cooling a specimen should extend its lifetime in the electron beam. This result has been found in a large number of experiments, but the degree to which cooling the specimen enhances its resistance to radiation damage has been found to vary widely with specimen types.


Author(s):  
Sonoko Tsukahara ◽  
Tadami Taoka ◽  
Hisao Nishizawa

The high voltage Lorentz microscopy was successfully used to observe changes with temperature; of domain structures and metallurgical structures in an iron film set on the hot stage combined with a goniometer. The microscope used was the JEM-1000 EM which was operated with the objective lens current cut off to eliminate the magnetic field in the specimen position. Single crystal films with an (001) plane were prepared by the epitaxial growth of evaporated iron on a cleaved (001) plane of a rocksalt substrate. They had a uniform thickness from 1000 to 7000 Å.The figure shows the temperature dependence of magnetic domain structure with its corresponding deflection pattern and metallurgical structure observed in a 4500 Å iron film. In general, with increase of temperature, the straight domain walls decrease in their width (at 400°C), curve in an iregular shape (600°C) and then vanish (790°C). The ripple structures with cross-tie walls are observed below the Curie temperature.


2002 ◽  
Vol 12 (3) ◽  
pp. 71-74
Author(s):  
J. A. Jiménez Tejada ◽  
A. Godoy ◽  
A. Palma ◽  
P. Cartujo

1964 ◽  
Vol 25 (5) ◽  
pp. 634-641 ◽  
Author(s):  
Sz. Kraśnicki ◽  
A. Wanic ◽  
Ž. Dimitrijević ◽  
R. Maglić ◽  
V. Marković ◽  
...  

1971 ◽  
Vol 32 (C1) ◽  
pp. C1-934-C1-936 ◽  
Author(s):  
S. B. BERGER ◽  
A. AMITH

Sign in / Sign up

Export Citation Format

Share Document