binary polymer
Recently Published Documents


TOTAL DOCUMENTS

494
(FIVE YEARS 43)

H-INDEX

50
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mayu Shono ◽  
Ritsuki Ito ◽  
Fumika Fujita ◽  
Hiroki Sakuta ◽  
Kenichi Yoshikawa

AbstractLiving cells maintain their lives through self-organization in an environment crowded with a rich variety of biological species. Recently, it was found that micro-droplets containing biomacromolecules, which vary widely in size, are generated accompanied by water/water phase-separation by simple mechanical mixing of an aqueous solution with binary polymers. Here, we report that cell-sized droplets of nearly the same size are generated as a linear array within a glass capillary upon the introduction of a binary polymer solution of polyethylene glycol (PEG) and dextran (DEX). Interestingly, when DNA molecules are added to the polymer solution, stable droplets entrapping DNA molecules are obtained. Similarly, living cells are entrapped spontaneously for the linearly-arranged cell-sized droplets. This simple method for generating micro-droplets entrapping DNA and also living cells is expected to stimulate further study on the self-construction of protocells and micro organoids.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4205
Author(s):  
Marwa H. Gouda ◽  
Noha A. Elessawy ◽  
Sami A. Al-Hussain ◽  
Arafat Toghan

The direct borohydride fuel cell (DBFC) is a low-temperature fuel cell that requires the development of affordable price and efficient proton exchange membranes for commercial purposes. In this context, super-acidic sulfated zirconia (SO4ZrO2) was embedded into a cheap and environmentally friendly binary polymer blend, developed from poly(vinyl alcohol) (PVA) and iota carrageenan (IC). The percentage of SO4ZrO2 ranged between 1 and 7.5 wt.% in the polymeric matrix. The study findings revealed that the composite membranes’ physicochemical features improved by adding increasing amounts of SO4ZrO2. In addition, there was a decrease in the permeability and swelling ratio of the borohydride membranes as the SO4ZrO2 weight% increased. Interestingly, the power density increased to 76 mW cm−2 at 150 mA cm−2, with 7.5 wt.% SO4ZrO2, which is very close to that of Nafion117 (91 mW cm−2). This apparent selectivity, combined with the low cost of the eco-friendly fabricated membranes, points out that DBFC has promising future applications.


2021 ◽  
Author(s):  
Yingxian Ma ◽  
Liqiang Huang ◽  
Zhi Zhu ◽  
Yurou Du ◽  
Jie Lai ◽  
...  

Abstract Inspired by non-covalent enhancement mechanism, we introduced glycinamide-conjugated monomer (NAGA) with dual-amide in one side group to amplify the hydrogen bonding interactions. Via one-step free radical polymerization strategy, we prepared a type of supramolecular thickener based on binary polymer. With NMR, FT-IR and SEM results’ help, we determined that PNAGA-AM system had unique bis-amide structure of glycinamide-conjugated monomer. As a result, the synthesized polymer could generate a much denser structure based on the high-ordered multiple hydrogen bonding with lower molecular weight (Mn = 778,400 g/mol), increasing the strength and stability of the chains. PNAGA-AM system had good thickening and temperature-resistant properties. The thickener viscosity of PNAGA-AM(3.0wt%) had twice as much as that of corresponding PAM system. And the viscosity of the 1.5 wt% solution prepared by PNAGA-AM could maintain 74 mPa·s at 150 °C. Meanwhile, the supramolecular system showed excellent salt resistance and self-healing performance with the non-covalent/hydrogen bonding interactions and physical entanglements. The viscosity of the PNAGA-AM system did not drop but increase in high salinity (≤ 300,000 mg/L salinity), and the maximum viscosity could increase nearly 44 % compared with the initial situation. In addition, the self-healing efficiency was over 100 % at 120 °C. Overall, the fracturing fluid system based on PNAGA-AM system could maintain outstanding rheological properties under extreme conditions and showed brilliant recovery performance, to make up the disadvantages of currently used fracturing fluid. It is expected to mitigate potential fluid issues caused by low water quality, harsh downhole temperatures and high-speed shearing.


2021 ◽  
Vol 155 (5) ◽  
pp. 054904
Author(s):  
Leon A. Smook ◽  
Guido C. Ritsema van Eck ◽  
Sissi de Beer

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1996
Author(s):  
Serena Coiai ◽  
Elisa Passaglia ◽  
Simone Pinna ◽  
Stefano Legnaioli ◽  
Silvia Borsacchi ◽  
...  

Exfoliated black phosphorus (bP) embedded into a polymer is preserved from oxidation, is stable to air, light, and humidity, and can be further processed into devices without degrading its properties. Most of the examples of exfoliated bP/polymer composites involve a single polymer matrix. Herein, we report the preparation of biphasic polystyrene/poly(methyl methacrylate) (50/50 wt.%) composites containing few-layer black phosphorus (fl-bP) (0.6–1 wt.%) produced by sonicated-assisted liquid-phase exfoliation. Micro-Raman spectroscopy confirmed the integrity of fl-bP, while scanning electron microscopy evidenced the influence of fl-bP into the coalescence of polymeric phases. Furthermore, the topography of thin films analyzed by atomic force microscopy confirmed the effect of fl-bP into the PS dewetting, and the selective PS etching of thin films revealed the presence of fl-bP flakes. Finally, a block copolymer/fl-bP composite (1.2 wt.%) was prepared via in situ reversible addition–fragmentation chain transfer (RAFT) polymerization by sonication-assisted exfoliation of bP into styrene. For this sample, 31P solid-state NMR and Raman spectroscopy confirmed an excellent preservation of bP structure.


ACS Nano ◽  
2021 ◽  
Author(s):  
Wenjie Wu ◽  
Maninderjeet Singh ◽  
Ali Masud ◽  
Xiaoteng Wang ◽  
Asritha Nallapaneni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document