Pore Pressures in Marine Sediments: An Overview of Measurement Techniques and Some Geological and Engineering Applications

Author(s):  
P. J. Schultheiss
2014 ◽  
Vol 135 (4) ◽  
pp. 2302-2302
Author(s):  
João P. Ristow ◽  
Guillaume Barrault ◽  
Julio A. Cordioli ◽  
Gregório G. Azevedo ◽  
Antônio H. Klein ◽  
...  

1991 ◽  
Vol 96 (B4) ◽  
pp. 5975-5984 ◽  
Author(s):  
E. E. Davis ◽  
G. C. Horel ◽  
R. D. MacDonald ◽  
H. Villinger ◽  
R. H. Bennett ◽  
...  

Author(s):  
C. C. Liao ◽  
H. Zhao ◽  
D.-S. Jeng

In this paper, we presented an integrated numerical model for the wave-induced pore pressures in marine sediments. Two mechanisms of the wave-induced pore pressures were considered. Both elastic components (for oscillatory) and the plastic components (for residual) were integrated to predict the wave-induced excess pore pressures and liquefaction in marine sediments. The proposed two-dimensional (2D) poro-elasto-plastic model can simulate the phenomenon of the pore pressure buildup and dissipation process in a sandy seabed. The proposed model overall agreed well with the previous wave experiments and geo-centrifuge tests. Based on the parametric study, first, we examined the effects of soil and wave characteristics on the pore pressure accumulations and residual liquefaction. Then, a set of analysis on liquefaction potential was presented to show the development of liquefaction zone. Numerical example shows that the pattern of progressive waves-induced liquefaction gradually changes from 2D to one-dimensional (1D), while the standing wave-induced liquefaction stays in a 2D pattern in the whole process.


1975 ◽  
Vol 26 ◽  
pp. 87-92
Author(s):  
P. L. Bender

AbstractFive important geodynamical quantities which are closely linked are: 1) motions of points on the Earth’s surface; 2)polar motion; 3) changes in UT1-UTC; 4) nutation; and 5) motion of the geocenter. For each of these we expect to achieve measurements in the near future which have an accuracy of 1 to 3 cm or 0.3 to 1 milliarcsec.From a metrological point of view, one can say simply: “Measure each quantity against whichever coordinate system you can make the most accurate measurements with respect to”. I believe that this statement should serve as a guiding principle for the recommendations of the colloquium. However, it also is important that the coordinate systems help to provide a clear separation between the different phenomena of interest, and correspond closely to the conceptual definitions in terms of which geophysicists think about the phenomena.In any discussion of angular motion in space, both a “body-fixed” system and a “space-fixed” system are used. Some relevant types of coordinate systems, reference directions, or reference points which have been considered are: 1) celestial systems based on optical star catalogs, distant galaxies, radio source catalogs, or the Moon and inner planets; 2) the Earth’s axis of rotation, which defines a line through the Earth as well as a celestial reference direction; 3) the geocenter; and 4) “quasi-Earth-fixed” coordinate systems.When a geophysicists discusses UT1 and polar motion, he usually is thinking of the angular motion of the main part of the mantle with respect to an inertial frame and to the direction of the spin axis. Since the velocities of relative motion in most of the mantle are expectd to be extremely small, even if “substantial” deep convection is occurring, the conceptual “quasi-Earth-fixed” reference frame seems well defined. Methods for realizing a close approximation to this frame fortunately exist. Hopefully, this colloquium will recommend procedures for establishing and maintaining such a system for use in geodynamics. Motion of points on the Earth’s surface and of the geocenter can be measured against such a system with the full accuracy of the new techniques.The situation with respect to celestial reference frames is different. The various measurement techniques give changes in the orientation of the Earth, relative to different systems, so that we would like to know the relative motions of the systems in order to compare the results. However, there does not appear to be a need for defining any new system. Subjective figures of merit for the various system dependon both the accuracy with which measurements can be made against them and the degree to which they can be related to inertial systems.The main coordinate system requirement related to the 5 geodynamic quantities discussed in this talk is thus for the establishment and maintenance of a “quasi-Earth-fixed” coordinate system which closely approximates the motion of the main part of the mantle. Changes in the orientation of this system with respect to the various celestial systems can be determined by both the new and the conventional techniques, provided that some knowledge of changes in the local vertical is available. Changes in the axis of rotation and in the geocenter with respect to this system also can be obtained, as well as measurements of nutation.


Author(s):  
T. Schober

Nb, Ta and V are prototype substances for the study of the endothermic reactions of H with metals. Such metal-hydrogen reactions have gained increased importance due to the application of metal-hydrides in hydrogen- und heat storage devices. Electron microscopy and diffraction were demonstrated to be excellent methods in the study of hydride morphologies and structures (1). - Figures 1 and 2 show the NbH and TaH phase diagrams (2,3,4). EM techniques have contributed substantially to the elucidation of the structures and domain configurations of phases β, ζ and ε (1,4). Precision length measurement techniques of distances in reciprocal space (5) recently led to a detailed understanding of the distortions of the unit cells of phases ζ and ε (4). In the same work (4) the existence of the new phase η was shown. It is stable near -68 °C. The sequence of transitions is thus below 70 %.


Sign in / Sign up

Export Citation Format

Share Document